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Introduction

In the previous unit we saw examples of data from the binomial distribution, in which there are two categories

for classi�cation. In the unit we develop a method for categorical data that occur in multiple categories.

Discrete distributions which can have more than two categories are referred to as multinomial distributions and

their analyses often employ the χ2 (Chi squared) method.

Objectives

• Understand how to use the χ2 test to evaluate discrete distributions of data.

• Be able to categorize data using contingency tables.

• Learn how to conduct statistical tests of differences among proportions, of independence, and of

heterogeneity of discrete data sets.

Fig. 1 Marigolds exhibit differing coloration. Photo by Loz Pycock; licensed under CC-SA 2.0 via Wikimedia Commons.



Chi-Square Testing

Purpose

Chi-square (χ2) tests may be used to analyze counts in categorical data.

Counts of data or data categorized on the basis of qualitative characteristics may be evaluated for signi�cant

differences using the chi-square test.

For example, during a recent growing season, 17 days had precipitation of 0-10mm, 9 days had precipitation of

10-20mm, 6 days had precipitation of 20-30mm, and 5 days had greater than 30mm of rain. Individually, these

data may not be of much use. But using the chi-square test, you can determine if this distribution is signi�cantly

different from that expected based upon the historical record.

A question you might ask would be: Did we have more days of heavier rain (> 30mm) or fewer days of light rain

(0-10mm)? Often this is a more meaningful way of classifying rainfall than total rainfall during a season.



Evaluation

Such data need to be evaluated to determine if differences in counts of the data are signi�cant. Analyses of

such data are done as analyses of counts. The test often applied to these is the χ2 test.

χ2 may be thought of as the combined deviation of multiple counts from their expected values. The χ2

distribution is itself a continuous distribution, taking on many different shapes depending on the degrees of

freedom as depicted by Figure 2 at right.

In Figure 2, the number on the Y-axis is the

probability that the χ2 value indicated on the x-axis

occurs. Probability of signi�cance is determined by

the area under the graph, usually to the right of a

certain number. For example, the probability of a χ2

value of 25 or larger, of occurring.

Notice that as the number of df becomes larger, the

χ2 distribution more closely approaches the normal

distribution, to which it is related. At lower degrees

of freedom, the χ2 distribution is skewed with lower

values having a higher probability of occurrence. At

higher degrees of freedom (>15), the distribution

closely approximates a normal distribution.

Fig. 2 Values of the chi-distribution for various degrees of

freedom.



Formula

Chi-square performs the analysis using counts. It estimates the difference in the observed number counted

from the number expected. The value of the test on the χ2 distribution is determined by its closeness to the

expected values.

The summed terms comprise a χ2 value which occurs somewhere on the graph.

The farther to the right on the graph the value occurs, the more the data deviate from expected. A critical value

is determined for a given probability level.

Equation 1

Fig. 2 Values of the chi-distribution for various degrees of freedom.



Evaluating Hypotheses

For a signi�cance level of 0.05, a χ2 value to the right of the critical χ2 value would have a 5% chance of

occurring. Thus, the χ2 test would be signi�cant at the 0.05 level. The interpretation is that the data deviated

enough from expected to produce the large χ2 value in the analysis. Data to the left of critical χ2 value line are

not signi�cant (Fig. 3).

This is based on a null hypothesis that the observed

data occur as expected. The alternate hypothesis

would be that the data deviate from the expected

values.

Fig. 3 Acceptance and rejection regions for a chi-square

distribution. Values greater than the signi�cance value

indicate that the data counted deviate signi�cantly from the

expected counts.



Yates' Correction

Small numbers of counts should be avoided if possible, as well as situations with few degrees of freedom. In

these cases, the power of the test is low and the chi-square approximation to the true distribution probabilities

may be inaccurate. Notice how the curves above change from having a few degrees of freedom to many

degrees of freedom. When possible, it is recommended to have each category contain at least �ve data points.

In situations where you have one df, such as 2 x 2 contingency table, you should apply Yates’ Correction for

Continuity. This correction factor involves subtracting 0.5 from the absolute value of each category or cell:

Yates’ correction for continuity:

The two straight lines around “observed-expected,” i.e. (||), mean that you should use the absolute value of that

difference — you should convert any negative values to positive before subtracting 0.5.

Equation 2



Testing Proportions

Hypotheses

Let's look at a simple example. A plant breeder is examining the inheritance of chlorophyll in a new maize

cultivar. It is hypothesized that three of every four (3:1 ratio) plants of the new population will be colored green

while the others will be yellow. After conducting an emergence test, it is found that of 200 plants emerged, the

ratio of green to yellow is 1:1, 100 green:100 yellow. Is this result different from what was expected? At what

probability level is it signi�cant?

The χ2 test will be used to test this example. We begin with the hypothesis:

H0 : The ratio of green to yellow in the emerged plants is the same as expected.

H  : The ratio of green to yellow in the emerged plants is different from expected



Calculation

The method of testing here divides the total emerged plants into their expected numbers. Of 200 plants it is

found that 100 were green and 100 yellow. Compare this to the expected numbers. In the 3:1 expected ratio,

150 would be expected to be green and 50 expected to be yellow. You have the data necessary to calculate the

χ2 statistic. Basically, there are two different cells or observations, the number of green and the number of

yellow plants. We know the expected value of each. Use the χ2 formula to sum the differences over the two

categories.

Since there are two observations and we are constraining the observations by one, the df are 2 – 1 = 1. We use

the Yates correction for continuity accordingly and subtract 0.5 from the absolute difference for each category.

= 65.34 with 1 df

 @  = 0.05 and 1 df is 3.84

 is signi�cant

The χ2 signi�cance value at 0.05 is 3.84. Even at a signi�cance level of 0.001, the critical χ2 value is 10.827.

What is observed is very different from what was expected. The testing indicates the null hypothesis IS NOT

correct. We would reject the null hypothesis, i.e., the ratio of green to yellow plants is different from expected.



Note that the binomial distribution provides an exact test, which is better than the χ2 test, even with the Yates'

correction (subtracting the 0.5 in the formula).

Exercise

https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/categorical-data-multivariate/calculating-chi-square-test-1-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/categorical-data-multivariate/calculating-chi-square-test-1-0


Calculating a Chi-Square Test (1)

The discussion of the χ2 test has introduced several interpretations of the test. Its main premise is to test a set

of counts, cells, or categories to determine if the numbers in each are signi�cantly different from the numbers

expected in each situation.

In this exercise we will perform the calculation on the original simple χ2 test (without Yates’ correction). In an

emergence test of 200 plants, 100 were observed to be green, while 100 were found to be yellow (a 1:1 ratio).

The expected ratio was 3:1 (150 green to 50 yellow in this case). Are the observed numbers different enough to

be signi�cant? In other words test the hypothesis:

H0: The true ratio is 3 green : 1 yellow

Hα: The true ratio is not 3 green : 1 yellow

Steps

Enter the data to get this table.

Color Count

Green 100

Yellow 100

Total =SUM(B2:B3)

The expected counts are 150 green and 50 yellow. The expected counts can be calculated from the total

observations and the 3:1 ratio. If the expected ratio is 3:1 there are 4 total.

Color Count Expected Ratio

Green 100 3

Yellow 100 1

Total 200 =SUM(C2:C3)

Divide both sides of the ratio by 4 to get a ratio with a total of 1.

Color Count Expected

Ratio

Normalized

Ratio

Green 100 3 =C2/C4



Yellow 100 1 =C3/C4

Total 200 4 =SUM(D2:D3)

The expected counts can then be calculated by multiplying the total number of observations by the expected

ratio.

Color Count Expected

Ratio

Normalized

Ratio

Expected

Count

Green 100 3 0.75 =D2*B4

Yellow 100 1 0.25 =D3*B4

Total 200 4 1 =SUM(E2:E3)

Check your math by making sure that the expected counts sum to the same number as the observed counts.

Color Count Expected

Ratio

Normalized

Ratio

Expected

Count

Green 100 3 0.75 150

Yellow 100 1 0.25 50

Total 200 4 1 200

The χ2 statistic is calculated using the observed and expected counts. There are two categories in this problem:

green and yellow. Within each category calculate ((O - E)2/ E) where O is an observed count, and E is an

expected count, then sum across the categories to �nd the statistic.

Color Count Expected

Ratio

Normalized

Ratio

Expected

Count

Chi-

Squared

Green 100 3 0.75 150 =((B2-

E2)^2)/E2)

Yellow 100 1 0.25 50 =((B3-

E3)^2)/E3)

Total 200 4 1 200 =SUM(F2:F3)

Color Count Expected Normalized Expected Chi-



Ratio Ratio Count Squared

Green 100 3 0.75 150 16.66666667

Yellow 100 1 0.25 50 50

Total 200 4 1 200 66.66666667

Find the degrees of freedom for this test by subtracting one from the number of rows. There are two rows,
so there is one degree of freedom.

The P-value for this test can be found using the formula "CHISQ.DIST.RT(Chi, DF)". Enter the calculated
chi-squared statistic for Chi and the correct degrees of freedom.

Chi-Squared =F4 66.66666667

Deg. of Freedom 1 1

P-value =CHISQ.DIST.RT(C8,C9) 3.21526E-16

A P-value less than 0.05 means that the test is signi�cant. In this case, the P-value is very small. This means

that the test is highly signi�cant and there is little or no chance that the results would have occurred by chance

and the null hypothesis should be rejected.



Testing a 9:3:3:1 genetic ratio

We use the same principles as in the �rst exercise to check other genetic ratios. Use Excel to analyze the data

from Example 18.10 on page 282 in our textbook. We observe 150, 42, 50, and 8 in the classes A, B, C and D,

respectively. From genetic theory, we hypothesize a 9:3:3:1 ratio. Should we reject this hypothesis?

H : The true ratio is 9A : 3B : 3C : 1D

H : The true ratio is not 9A : 3B : 3C : 1D

Open a new Excel workbook and enter the this data set:

Class Count

A 150

B 42

C 50

D 8

Follow the same steps used in Exercise 5.1. The ratio for this hypothesis 9:3:3:1 with a total of 16. This ratio is

used to calculate the expected counts.

Class Count Expected Ratio Normalized Ratio Expected Count Chi-Squared

A 150 9 0.5625 140.625 0.625

B 42 3 0.1875 46.875 0.507

C 50 3 0.1875 46.875 0.2083333333

D 8 1 0.0625 15.625 3.721

Total 250 16 1 250 5.0613333333

Chi-Squared 5.0613333333

Deg. of Freedom 3

P-value 0.1674



The probability of a greater Chi-Square (the p-value) is 0.1674, and we fail to reject the null hypothesis. This can

be determined from the P-value which is greater than the alpha level of 0.05.



Observations vs. Expectations

To test whether an observed proportion is different from the theoretical proportion.

A proportion measures what percentage of a population that has a certain characteristic or does not have a

certain characteristic. These are measured as a proportion or percentage of the population (35% of the

population will have a trait) or as ratios (3:1 ratio means 3 of every four members of a population contain a

genetic allele) within the population. When sampling a population, you may want to know whether this sample

population has a characteristic occurring in a different proportion as compared to the whole population. Or an

experimental treatment may cause a population to have a different ratio of occurrence of a certain

characteristic than expected. Did what happened in an experiment deviate from what was expected? How much

did it deviate? These are questions which can be answered using the χ2 test.

We have already seen some proportion data in the binomial distribution in the module on Categorical Data—

Binary. The chi-square analyses for the simple case of two categories agree with the results of the normal

approximation to the binomial. However, the χ2 can be used for counts from more than just two categories.



Contingency Tables

Description

Contingency tables are tables of count data and can be analyzed with χ2.

The simple proportion example shown earlier could have been analyzed with a contingency table. Often more

complex experiments have interactions between two ways of categorizing the data. For example, �ower color

and leaf pubescence. The contingency table simpli�es the comparison by breaking down the categories for

each variant into a table format, which is designed for completing two-way analyses. It has a form which

classi�es the �rst set of data over the columns and the second set over the rows.

Notice that each row and column have a total, rk and cm, respectively. These numbers are the counts for each

cell de�ned by the row category and column category. Comparing these numbers to the total of the whole table

establishes the total proportion break-down of each cell. The row totals give a break-down of the row categories

and the column totals for the column categories. Summing each of the row totals and column totals produces

the grand total. The row and column totals are also integral to the χ2 test because they can be used to calculate

an expected value in each cell for a two-way analysis. This expected value is then compared with the actual

number counted by using the χ2 test.

Table 1

Level 1 2 3 4 ... c Total

1 O11 O12 O13 O14 ... O1c r1

2 O21 O22 O23 O24 ... O2c r2

3 O31 O32 O33 O34 ... O3c r3

. . . . .   . .

. . . . .   . .

r Or1 Or2 Or3 Or4 ... Orc rk

Total c1 c2 c3 c4 ... cm n



Expected Values

The expected value calculation assumes independence of the two criteria (which will be tested in the next

section). This assumption states that the variables in the columns and the rows have no interaction; they are

independent of each other. One property of independence is that the expected value of each cell should be the

product of the row and column category proportions times total number. This results in the following formula:

The number calculated uses the relative proportion of each row and column to calculate the number each cell

should contain. The calculation of the χ2 occurs by summing the deviations of each cell from its expected

value.

Equation 3

Table 1

Level 1 2 3 4 ... c Total

1 O11 O12 O13 O14 ... O1c r1

2 O21 O22 O23 O24 ... O2c r2

3 O31 O32 O33 O34 ... O3c r3

. . . . .   . .

. . . . .   . .

r Or1 Or2 Or3 Or4 ... Orc rk

Total c1 c2 c3 c4 ... cm n



Degrees of Freedom

The degrees of freedom associated with this are calculated as the product of one less than the row and column

categories.

For example, a 2 x 2 table would have (2-1) x (2-1) = 1 df.

For better statistical inferences, each cell should contain at least a count of �ve. If smaller counts occur,

combining of row or column categories is suggested to create cell counts larger than �ve. Recent studies

suggest that even though the observed count in a cell is �ve, the expected count for cells need only be larger

than six, when signi�cance at the 0.05 level is needed, or an expected value larger than 10, when signi�cance at

the 0.01 level is desired.

The simplest case of contingency tables is a 2 x 2 analysis. But more detailed tables may be created, even into

multiple dimensions. When using a 2 x 2 table, the correction for continuity should be used. Other corrections

than the Yates’ Correction for Continuity exist for other situations.

Equation 4



Test for Independence

Two-way Example

An example of this is the effect of different fertilizer

treatments on the incidence of blackleg (Bacterium

phytotherum) on numbers of potato seedlings.

Our objective is to test if occurrence of the disease

has some relationship to nitrogen or manure

fertilizer application.

The null hypothesis is that fertilizer and Blackleg

occurrence have no relationship, i.e., fertilizer

application and Blackleg are independent.

We then compute a χ2 statistic to see if the value is

high enough to reject the null.

Fig. 4 Effect of Blackleg bacteria on potato tuber. Photo by

the United Nations Economic Commission for Europe.

Table 2

Observed

frequencies

Blackleg No

blackleg

Total

No fertilizer 16 85 101

Nitrogen

only

10 85 95

Manure

only

4 109 113

Nitrogen

and manure

14 127 141

Total 44 406 450



Blackleg Example

These observed values are compared to the calculated expected values, using the expected value equation and

set up in an expected value table.

Table 2

Observed frequencies Blackleg No blackleg Total

No fertilizer 16 85 101

Nitrogen only 10 85 95

Manure only 4 109 113

Nitrogen and manure 14 127 141

Total 44 406 450

Table 3

Expected

frequencies

Blackleg No blackleg Total

No fertilizer 9.9 91.1 101

Nitrogen only 9.3 85.7 95

Manure only 11.0 102.0 113



Expected

frequencies

Blackleg No blackleg Total

Nitrogen and

manure

13.8 127.2 141

Total 44 406 450

Table 4

Blackleg No blackleg

No fertilizer 3.76 0.41

Nitrogen only 0.05 0.01

Manure only 4.45 0.48

Nitrogen and

manure

0.00 0.00

Total 8.26 0.90



Calculating Differences

The calculated χ2 from summing over the table values is 9.16. This is larger than the signi�cance value at the

0.05 level (3 df), 7.82. The degrees of freedom are (4–1)(2–1) = 3 because there are 4 rows and 2 columns. The

deviations from expected in the cells are large. The expected value in each cell assumes independence of the

conditions. Since the data deviate from those values signi�cantly, we reject the null hypothesis of independence

and conclude that the fertilizer treatment affected the incidence of blackleg in this experiment.



Testing for Independence of Data

We will duplicate the analysis of independence of

data sets using the text example 18.13 with Excel.

Five storage methods were tested for effects on

germination of peas. The data are from Table 18.5

in Practical Statistics and Experimental Design for

Plant and Crop Science.

First, enter data into an Excel table with the

variables 'Germinated' (Yes or No), and 'Count’.

Your data should look like this.

The hypothesis tested here is:

 Germination and Storage method are independent of each other

 Germination and storage method are not independent of each other

Fig. 5 Germinating plants. Photo by Iowa State University.

Table 5

Storage Method Germinated Count

A yes 112

A no 12

B yes 76

B no 14

C yes 88

C no 32

D yes 43

D no 7

E yes 92

E no 8



Testing for Independence of Data (2)

Make the analysis easier by arranging the data into a table.

Sum across each column and row. Then sum the column or row totals to �nd the grand total. This is a good

chance to check the arithmetic by making sure that the column totals and row totals sum to the same value.

The expected counts can now be calculated using row, column, and grand total. Each expected count is

calculated using the formula:

The expected values have been �lled into this table. See if you can repeat the results in your own table.

We see that the Pearson Chi-square is 19.379 and we therefore reject the hypothesis that storage methods are

independent of germination. The degrees of freedom can be calculated as: (Rows – 1) * (Columns – 1). The

Table 6

Observed A B C D E Row Total

Yes 112 76 88 43 92 411

No 12 14 32 7 8 73

Column Total 124 90 120 50 100  

      Grand Total 484  

Equation 5

Table 7

Observed A B C D E

Yes 105.2975207 76.42561983 101.9008264 42.45867769 84.91735537

No 18.70247934 13.57438017 18.09917355 7.541322314 15.08264463

Column

Total

124 90 120 50 100

      Grand Total 484



P-value is less than 0.05, so we reject the null hypothesis.

Table 8

χ2 A B C D E

Yes 0.426631406 0.002370308 1.896284678 0.00690153 0.59073767

No 2.401993258 0.013345158 10.6763425 0.038856561 3.325932299

Column

Total

2.828624664 0.015715465 12.57262718 0.045758091 3.916669666

Table 9

Total 19.37939507

DF=(r-1)*(c-1) 4

P-value 0.000661886



Testing for Independence of Data (3)

The test was for independence here. Independence

would mean that the two categories have no effect

on each other. The observed cell values, if

independent, would not deviate much from the

expected values. In this case the data have deviated

enough to be signi�cant at the 0.001 level. Our

conclusion then is that there is some effect of

storage method on viability of plants.

Fig. 5 Germinating plants. Photo by Iowa State University.



Two-way Contingency Tables

We test to see if two categorical variables are associated.

The contingency table is applied in situations where we have a two–way (or higher) classi�cation structure. We

may wish to test to see if the two different bases for categories are independent of each other. For example, we

might want to learn if two transgenes are segregating independently or if they are linked. In fact, the null–

hypothesis assumption in calculating the expected values of cells assumes independence of the two

categorizations. The two–way analysis sorts the data to compare the interaction between variables. If the data

are independent, then the numbers in the cells should be similar to the expected values. If the data are not

independent, or there is a signi�cant amount of interaction between variables, the contingency table and χ2 test

will indicate numbers different from expected in the cells.

The χ2 statistic can be applied to test for independence. The calculation is done as illustrated previously. The

squared differences between the observed and expected, divided by expected, are summed over all cells of the

table and tested via the χ2 statistic.



Test for Heterogeneity

Description

We also can test whether several samples are homogeneous enough to be pooled together.

The test for heterogeneity is similar in method to the test for independence which tests each cell for its

difference from expected. But interpretation is distinctly different. In the test for heterogeneity, two or more

different samples are identi�ed. Samples are tested to see if they could have been drawn from the same

population (i.e., proportion for each sample is similar). If the samples are similar they are considered

homogeneous and from the same population. If they are not, then they are heterogeneous and considered from

different populations. For example we might want to test whether genetic linkage between two transgenes is

the same in two different genetic backgrounds. It is determined by testing the breakdown of numbers into

categories from one sample to the next. In the test of heterogeneity, when the χ2 value is signi�cant, the

samples are heterogeneous.



Pooling Data

If several samples are found to be homogeneous, the data can be pooled. The usefulness of pooling the

samples is in order to create larger sample sizes with fewer categories. Each additional category adds a degree

of freedom to the analysis. Each degree of freedom we remove by pooling categories allows for a smaller χ2

value to be signi�cant, thus making the test more powerful. The pooled samples should have the same

characteristics as the individual samples, but allow better detection of real differences. The text "Agricultural

Experimentation, Design and Analysis" by Thomas Little and F. Jackson Hills (1978, John Wiley and Sons)

describes an example of the breakdown of eight progenies of marigolds into normal and virescent categories

which we will use to illustrate this test. Virescent means that chlorophyll is present in petals of the �ower.

In this example, we want to test whether the 8 samples, each of which can be tested for a 3:1 ratio, can be

pooled together. To do this, we calculate the χ2 for each sample, sum these together, and subtract the χ2 for the

pooled data. This gives a measure of interaction, which if large, implies the samples are too heterogeneous to

pool together.

Why would we want to pool in the �rst place? In the above table, we can see that nearly every sample (progeny)

has χ2 value above 3.0 for a 1 df test. This is not large enough to reject the null hypothesis (critical χ2 = 3.84),

but is signi�cant at the 10% level. With several progenies individually showing this trend, we want to combine

the data to have su�cient evidence to reject the 3:1 ratio if it is not true. However, we must test for

heterogeneity �rst to know whether the samples can be combined.

Table 10

Progeny Normal Virescent χ2 (3:1)

1 315 85 3.00

2 602 170 3.65

3 868 252 3.73

4 174 42 3.56

5 192 48 3.20

6 165 39 3.76

7 161 43 1.67

8 629 175 4.48

Totals 3106 854 27.05



We do this test for heterogeneity in three steps:

1. Compute individual chi-square statistics for each of the individual samples and add them

2. Compute the chi-square for pooled samples

3. Subtract chi-square values and degrees of freedom to test for heterogeneity. If the χ2 from subtraction is

small relative to the table value, we would fail to reject the null and conclude progeny ratios are

homogeneous. If large, we reject the null and consider them heterogeneous.



Chi-Square Values

The eight different progenies were tested for their difference in the normal versus virescent from an expected

3:1 ratio. Only one differed from that ratio signi�cantly (#8). They seem to be similar in their sample make-up.

To further test the data we start by pooling the samples to test for heterogeneity. The raw numbers can be

summed and the χ2 value is calculated for a 3:1 ratio. Note that the total number of plants is 3,960 and we

expect 2,970 normal:990 virescent.

Equation 6

Table 11

Progeny Normal Vireset X2(3:1)

1 315 85 3.00

2 602 170 3.65

3 868 252 3.73

4 174 42 3.56

5 192 48 3.20

6 165 39 3.76

7 161 43 1.67

8 629 175 4.48

Totals 3106 854 27.05

Table 12

Source df X2

Total 8 27.05

Pooled 1 24.91

Heterogenity 7 2.14



This value is highly signi�cant, with 1 df. But, are we justi�ed in pooling? To �nd if the samples are

heterogeneous, the second step is summing the χ2 values from each sample. The sum of those is 27.05. (This

is a property of χ2 values; they may be added for independent groups, such as the 8 independent progeny.) The

eight total degrees of freedom can be partitioned into the pooled χ2 with 1 df and the heterogeneity (non-

homogeneity) with 7 df. The difference in the χ2 values gives the χ2 for the heterogeneity.

In this case, the heterogeneity is not signi�cant. Therefore, the data are considered to be homogenous. We will

work more with this example in the next Try This exercise.

One historical source of confusion in testing heterogeneity is this: from where do the heterogeneity degrees of

freedom come? Part of this confusion is because earlier in this lesson you were taught that the degrees of

freedom for the chi-square distribution was equal to the (number of categories – 1) for a one-way (single

factor) study, and equal to (rows-1)*(columns-1) for a two-way study (see contingency tables).

For the test of heterogeneity, the degrees of freedom associated with the heterogeneity are calculated

differently. In effect, we calculate the degrees of freedom for each population (“progeny” in the table) and then

add those degrees of freedom. So for Progeny 1, there was 1 degree of freedom associated with the chi-square.

Since there are 8 total progeny, there are 8 degrees of freedom associated with the heterogeneity chi-square.



Testing for Hetero/Homogeneity

The chi-square analysis can be used to test for differences in the proportions of samples. When several

repeated samples are gathered, they may be tested to determine if they may have come from the same

population (are homogenous). If they have come from the same population, the samples may be pooled,

strengthening the test by adding replicated measurements. The hypothesis tested is:

H  The samples are homogenous and can be pooled.

H  The samples are not homogeneous and should not be pooled.

• A test of homogeneity is done by �rst testing each sample (referred to as progeny here) then adding each

category together and calculating a chi-square statistic for the entire sample.

• See QM-mod5-ex4data.xls to test this hypothesis. The progeny 1 sample has been �lled in. The same

tools from previous exercises are used, but a different hypothesis is tested.

• The P-value is much higher than 0.05, and it is appropriate to fail to reject the null hypothesis and

conclude that the samples are homogeneous.

https://pbea.agron.iastate.edu/files/qm-mod5-ex4dataxls
https://pbea.agron.iastate.edu/files/qm-mod5-ex4dataxls


Summary

Chi-Square Test

• Has degrees of freedom depending on number of categories.

• Goodness of �t: χ2 = Sum (O-E)2/E

• Yates’ continuity correction for small df

Tests of Proportions

• Find expected number in each class

• Use of the χ2 goodness-of-�t

Contingency Tables

• Tables of count data

• Tested with chi-square

• Expected value is (Row proportion x Col Proportion) / (Total)

• Degrees of freedom is (Rows-1) x (Cols-1)

• Comparison of two proportions is 2 x 2 contingency table

Test for Independence

• Bell-shaped curve

• Symmetric about the mean, μ

• 68% of values are within 1 σ and 95% are within 2 σ of mean

Test for Heterogeneity

• Tell how many standard deviations above or below the mean

• De�ned as (Y – μ)/σ

• Allow computation of probabilities with the normal distribution

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/purpose
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https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/hypotheses
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/hypotheses
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https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/two-way-example
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/categorical-data-multivariate/two-way-example
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Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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