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Introduction

The analyses of variance (ANOVAs) with which you have worked extensively in the past 4 lessons share basic

assumptions about the data being analyzed. The analysis is invalid if these assumptions are incorrect.

Fortunately, these assumptions can be quickly tested. Finally, if the assumptions regarding a particular data set

are found to be false, there are methods which can be followed to properly modify the data before conducting

an analysis.

Objectives

• The assumptions made in conducting the analysis of variance

• How to test for heterogeneity of variances

• Experimental situations which may produce heterogeneity of variances

• How to transform data so that it meets the assumptions of the analysis of variance



Assumptions of ANOVA

3 Main Assumptions

There are 3 main assumptions in Analysis of Variance.

For an analysis of variance to be valid, all of the following assumptions must apply:

• The error terms are normally, independently, and randomly distributed.

• The variances are homogeneous and not correlated with the means of different samples (treatment

levels).

• The main effects and interactions are additive.

Each of these assumptions is further discussed on the following pages.



Normality, Independence and Random Distribution of Errors

Normality, or following a normal distribution, is often assumed of data sets, but is infrequently realized in

practice. This is because the number of observations in the data set is often too few for the set to resemble a

normal distribution curve. Fortunately, the analysis of variance is a robust procedure, and is rarely seriously

affected by deviations from normality.

Independence assumes that there is no relationship between the size of error of a treatment group and the

experimental units (plots) to which it is allocated. The same treatment effect should be apparent, then,

regardless of the experimental units to which the treatment is applied. In other words, the assumption of

independence implies that the error associated with each level of treatment should re�ect the natural variation

in experimental units.

https://pbea.agron.iastate.edu/normal-distribution-1
https://pbea.agron.iastate.edu/normal-distribution-1
https://pbea.agron.iastate.edu/robust-0
https://pbea.agron.iastate.edu/robust-0
https://pbea.agron.iastate.edu/independent-0
https://pbea.agron.iastate.edu/independent-0


Study Question 1

Which of the following two plot plans exhibits independence of experimental treatments? Click on
the correct plot plan.





 Check



Homogeneity of Variances

Error variances should be constant. Refer to any of the ANOVAs from past lessons and you will note that the

difference between all levels of a treatment is tested using one error term. This error term is pooled, or the

average of the variances associated with each level of the treatment. The variances associated with the

different treatment levels must be homogeneous if the pooled error can be correctly used to test their

differences.

What happens if this assumption of homogeneity is violated? The result will be that the error term used to test

the difference between treatments will be too large for comparing treatment levels with small variances, and

too small for comparing the treatment levels with large variances.

If data are determined to have heterogeneity of variances, then the researcher has two options. She or he may

want to arrange the treatment levels into groups with similar variances and analyze each group separately.

Alternatively, she or he may decide to transform the data, as will be discussed later in this lesson.

Constant variance implies independence of Means and Variances. When heterogeneity of variances occurs, the

variance often does not vary at random with the treatment level. Instead, the variance is dependent on the

mean, so that the two are correlated. The variance may increase with the treatment mean, so that larger means

have larger variances.

The assumption of constant variance is more likely to be violated in data sets in which the means vary widely or

with certain types of data that we will learn about later in this lesson.



Linear Additive Model

We assume the linear additive model holds. The linear additive model, as you have already seen, can be used to

describe an experimental model. The additive model suggests that each treatment effect is constant across

different levels of other treatments or blocks. Differences between observations receiving the same treatment

level or combination of treatments is therefore entirely the result of variation between experimental units.

For example, the linear additive model for the RCBD is shown in Equation 1.

where:

 = grand mean

Bi = block effect

Tj = treatment effect

BTij = Block - Treatment interaction (error) 

Equation 1



Additive Treatments

If we were comparing different rates of fertilizer, then the assumption of additivity is that the difference in the

crop yield produced by fertilizer rates will be the same, regardless of the experimental unit. The data from our

experiment might resemble that in the “additive” columns of the following table:

This assumption is occasionally violated when there is an interaction between the plots (experimental units)

themselves and the treatment. For example, the difference between the nitrogen rates may be much more

profound in experimental units with adequate phosphorous and potassium fertility than in experimental units

with poorer soils. Our data may then turn out to be multiplicative, as shown in the right two columns (Table 1).

Data which do not conform to the additivity assumption may be transformed using the log transformation

discussed later in this lesson.

Table 1 Additive and Multiplicative Effects

  Additive Multiplicative

Treatment 1 2 1 2

1 10 20 10 20

2 30 40 30 60

3 50 60 50 100



Testing Heterogeneity

Bartlett's Test

Bartlett’s Test is used to test for constant variance

We saw in an earlier example that for two treatments, we could test equality of variances with the ratio of larger

sample variance to smaller, eg. F = S1
2 / S2

2 if S1
2 is larger. We reject the null hypothesis of equal variances if

the F value is high. But, how do we do a similar test if there are three or more treatments? We can use a test

developed by Maurice Bartlett.

A data set which is suspected of not meeting the homogeneity of variance assumption can be tested using

Bartlett's Test for Homogeneity of Variance. We will go through the steps of Bartlett's test to illustrate the

underlying formulas, but will later use R in solving problems to test variance homogeneity.

https://pbea.agron.iastate.edu/bartletts-test-homogeneity-variance
https://pbea.agron.iastate.edu/bartletts-test-homogeneity-variance


Example

First, the error sum of squares associated with each mean is recorded in the table above.

Second, the degrees of freedom are listed, and the error sums of squares are divided by the degrees of freedom

associated with each level of treatment. So far, this process is very similar to setting up an ANOVA table. In

fact, S2 for each treatment level is equivalent to the mean square error for that level.

Third, the ln, or natural log, of each variance is calculated and recorded in the fourth column.

The appropriate means and sums are calculated at the bottom of the table.

Table 2

Experiment SS (error) df s2 ln(S2)

1 157.8 18 8.77 2.171

2 134.5 18 7.47 2.011

3 325.5 18 18.08 2.895

4 308.4 18 17.13 2.841

5 111.3 18 6.18 1.822

6 214.2 18 11.90 2.477

    11.59  

      14.217

https://pbea.agron.iastate.edu/natural-log
https://pbea.agron.iastate.edu/natural-log


Chi-Square Value

Finally, the values from the table are appropriately inserted into the following formula, where a chi-square value

is calculated.

Bartlett's Test for Homogeneity of Variance

where:

df = degrees of freedom associated with each treatment 

n = treatment

 = pooled error variance

 = error variance for treatment 

This value is used to test the null hypothesis H0: all treatment variances are equal. The observed chi-square

value is compared with the critical value, using the degrees of freedom associated with the number of

treatments, or n-1.

Equation 2



Interpretation

The observed chi-square value is then interpreted in the following manner:

• If P>0.01, then we accept that there is no signi�cant difference between the variances, and therefore no

need to transform the data.

• If P<0.001, then we reject the null hypothesis, and determine that the variances are indeed different. The

data must therefore be transformed or analyzed in another appropriate manner.

• If 0.01>P>0.001, then we must try to determine whether there is any theoretical basis for why the data

would not meet the heterogeneity of variance requirement; otherwise, we should not transform.

If necessary, the data can usually be transformed using one of the methods on the following pages.



Study Question 2

Bartlett’s Test for Homogeneity of Variance 

Equation 3

Does the chi-square value indicate that the variances are different?

No

Yes

 Check



Ex. 1: Evaluating the Variances

Let's try this using R and a different set of data.

The data in the QM-mod12-ex1data.xls worksheet are from a growth chamber experiment in which a number of

treatments were applied to eastern gamagrass seed in an attempt to break dormancy and thereby increase

germination percentage. The treatments consisted of:

• control (no treatment)

• wet chilling for 2 weeks

• wet chilling for 4 weeks

• wet chilling for 2 weeks with scari�cation, and

• wet chilling for 4 weeks with scari�cation

The experimental design was a CRD with �ve replications.

The data are expressed as percentages. This should lead us to suspect that there may be a potential for

problems with the assumptions for the ANOVA.

In this exercise we will use Excel to create a table of treatment means and variances which we will examine to

see if they conform to the homogeneity assumption.

https://pbea.agron.iastate.edu/files/qm-mod12-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod12-ex1dataxls


Ex. 1: Creating a Pivot Table

1. Using the mouse, select all the data in the worksheet. Be sure to select the top row which contains the data

labels.

2. Select PivotTable from the Insert menu.

3. A dialog box will open and the data you have selected will automatically appear in the box next to Select a

table or range.

4. Click the circle next to New Worksheet and then OK. 

5. The next screen will show an empty table with a panel on the right side titled PivotTable Field List, which is

used to format the table.

6. Drag the Treatment �eld into the Row Labels box in the panel.

7. Drag the Germination button into the Values box in the panel.

Fig. 1 Creating a Pivot Table



8. Click on the Sum of Germination �eld and select Value Field Settings... from the popup menu that appears.

9. Select Average from the list of options that appear, then click OK to calculate and display the �ve treatment

means.

10. Once again, drag the Germination button into the Values box in the panel.

11. Click on the Sum of Germination �eld and select Value Field Settings... from the popup menu that appears.

12. This time, select Var from the list of options that appear, then click OK to calculate and display the �ve

treatment variances.

Fig. 2 Displaying treatment means 



Your completed pivot table should look like the one above.

Fig. 3 Completed Pivot Table



Ex. 1: Examining Homogeneity Assumption

In looking at the variances associated with the �ve treatments there appears to be a potential problem with the

homogeneity assumption. The variance of Treatment 1 is 1.093 compared with 24.773 for Treatment 3. The

ratio of these two variances is 22.67 which is relatively large. This situation should lead us to examine more

thoroughly the assumption of homogeneity. 

Note: Later in this unit, we will learn how to "transform" data so that the variances are more equal. Sometimes it

will help us to decide what transformation function to use if we look at how both variance and standard

deviation vary with treatment means.

To calculate the standard deviation for treatment means, simply choose "Std Dev" instead of "Var" in Step 12.

Fig. 4 Examining the two variances



Study Question 3



Ex. 1: Plotting the Variance against Means

A good way to visualize what is going on with the data is to plot the variances against their associated means.

In this exercise we will use Excel to create a plot of the means and variances. The most expedient way to

accomplish this is to create a Pivot Chart using the Pivot Table we just made in Exercise 1.

Create an XY graph of the means and variances using the following steps:

1. Using your mouse, place the cursor anywhere within in the Pivot Table you created for the last exercise.

2. At the very top of the Excel window to the right a menu item labeled PivotTable Tools will appear. Select

this menu item and then click on the PivotChart icon that appears.

3. Select the �rst chart style that appears in the Column template.

4. The graph that is created should look something like:

Our assumption for the ANOVA is that the variances of the �ve treatments are equal. By looking at the graph

that the variances for Treatments 3 and 4 are considerably higher than the others which should lead us to

explore our assumption further.

Note that you can produce the same style chart if you have produced a pivot table with standard deviations

instead of variances.

Sometimes, it is easier to visualize the relationship between the variance and treatment means if we plot them

Fig. 5 Excel Pivot Chart



in a scatter plot. This is a little more tricky than the PivotChart you just made, but it allows us to better see how

variance increases with treatment means. In addition, to choose which transformation function to use (see

Table 12.5), sometimes you need to compare the relationship between variance and mean to that between

standard deviation and mean to see which relationship is more linear. 



Ex. 1: Creating a Scatterplot

To produce a scatterplot with variances on the Y-axis and treatment means on the X-axis:

1. Select the “Average” and “Var” columns from your PivotChart. Do not select the treatment column or the

Grand Total row. Copy and paste these below your original chart. 

2. Highlight your new table. Then choose Insert from the menu bar, then Scatter, then the �rst chart style.

Fig. 6 Duplicate the "Average" and "Var" columns



Your chart should look like the one below. Again, the treatment means are on the X-axis and the variances are

on the Y-axis.

In this case, there does not seem to be a linear relationship between variance and treatment mean. However,

this chart again shows that the variances associated with two of the treatments are many times greater than

those associated with the other. Data transformation may be required so that the variances meet the

assumptions of the Analysis of Variance.

The same method can be used to create a plot with Standard Deviation on the Y-axis and Treatment means on

the X-axis. Simply create a pivot table with treatment means and standard deviation and then follow the two

steps above.

Fig. 7 Select the Scatter chart style

Fig. 8 Var of Germination chart



Prerequisite Knowledge

Notes to educators and students

There is some prerequisite knowledge required in order to understand everything in this lesson.

Participants should be familiar with designing linear models and conducting ANOVAs, and also understand how

least signi�cant differences are calculated.



Ex. 2: Test for Homogeneity of Variances - Using R

Introduction

When conducting an analysis of data, there are numerous assumptions that are made about the data. Sadly, in

the real world these assumptions are often violated, leading to poor interpretation of the results. In this activity,

we will explore ways to deal with these assumption violations when it comes to performing an analysis of

variance (ANOVA).

R Code Used In This Exercise

Packages:

• plyr

• reshape2

• ggplot2

• agricolae

Code:

• setwd()

• detach()

• names()

• log()

• read.csv()

• as.factor()

• cbind()

• sqrt()

• head()

• aov()

• melt()

• asin()

• str()

• summary()

• qplot()

• LSD.test()

• attach()

• aggregate()

• bartlett.test()



Ex. 2: Review of 3 ANOVA's Main Assumptions

As A Review, These Are The 3 Main Assumptions Of The Anova

The error terms are normally, independently, and randomly distributed.

This means that the error terms follow a normal distribution although this is di�cult in smaller sample sizes.

There should also be independence between the size of the error of a treatment group and the experimental

units to which it is allocated.

The variances are homogenous and not correlated with the means of different levels.

The error variances should be constant. Remember that the difference between all levels of a treatment is

tested using one error term (pooled) and if this assumption is violated then the error term used to test the

differences between treatments will be too large for comparing treatment levels with small variances and too

small for comparing treatment levels with large variances.

The main effects and interactions are additive.

This means that we assume that the linear additive model we are using to analyze the data holds true.

Sometimes this assumption is violated because there is an interaction between the plots and the treatments,

but this data can be transformed using the log transformation.

In this lesson, we will explore how to determine if your data should be transformed and if so, what kind of

transformation is appropriate.



Ex. 2: Exercise Introduction

You are a student and you wish to study the effects of 5 treatments on breaking gamagrass seed dormancy. The

treatments were a control (no treatment), wet chilling for 2 weeks, wet chilling for 4 weeks, wet chilling for 2

weeks plus scari�cation, and wet chilling for 4 weeks plus scari�cation. You decide to test the treatments on a

single, common variety using a completely random design with 5 replications for each of the treatments. The

data for these treatments are expressed as the percent germination in the �le Set1.csv. In this activity we will

use R to check the second and third assumptions of the ANOVA by creating a table of treatment means and

variances which we will examine to see if the homogeneity of the variances assumption was violated. Then, if

the assumption is violated, we will explore ways to transform the data for a more accurate analysis.

Our �rst step is to start visualizing our data, and one way to do this is to create a table of means and variances

of the means. First, you will need to read in the data and ensure that it was read in properly as well as make

sure that the “Treatment” column is considered to be a factor.

https://pbea.agron.iastate.edu/files/set1csv
https://pbea.agron.iastate.edu/files/set1csv


Ex. 2: Read the Data

Read in the data and check the structure: 

germdata<-read.csv("Set1.csv", header=T)

head(germdata)

   Treatment Rep Germination

1          1   1        12.7

2          1   2        11.3

3          1   3        13.4

4          1   4        10.8

5          1   5        12.0

6          1   1        25.9

str(germdata)

'data.frame': 25 obs. of 3 variables:

 $ Treatment   :  int 1 1 1 1 1 2 2 2 2 2 ...

 $ Rep         :  int 1 2 3 4 5 1 2 3 4 5 ...

 $ Germination :  num 12.7  11.3  13.4  10.8  12  25.9  24.5  26.2  23.9  24.1...

Since “Treatment” is considered an integer, not a factor, we need to change that with the as.factor function: 

germdata$Treatment<-as.factor(germdata$Treatment)

Treatment<- as.factor(germdata$Treatment)

detach(germdata)



attach(germdata)

str(germdata)

'data.frame':  25 obs. of 3 variables:

 $ Treatment   : Factor w/ 5 levels "1", "2", "3", "4",..: 1 1 1 1 1 2 2 2 2 2 ...

 $ Rep         : int 1 2 3 4 5 1 2 3 4 5 ...

 $ Germination : num 12.7 11.3 13.4 10.8 12 25.9 24.5 26.2 23.9 24.1 ...



Ex. 2: Visualize the Data

To help visualize the data, we will start by making a table of the treatment means and variances and standard

deviations. This can be done with the following code which analyzes the data set using the speci�ed function

(mean, variance, and standard deviation respectively) based on a speci�ed variable in the data set (here, it is

Treatment). The code also renames the new column that is made to better re�ect which function was used.

Otherwise without renaming, the column head would just read “Germination” regardless of what you have

actually calculated. This �rst code calculates the treatment means: 

means <- aggregate(germdata["Germination"], by=germdata["Treatment"], FUN=mean)

names(means)[names(means)++"Germination"] <- "GermMean"

means

  Treatment  GermMean

1         1     12.04

2         2     24.92

3         3     39.74

4         4     56.48

5         5     75.70

The same code format can be used to calculate the treatment variances and standard deviations just by

changing the “FUN=” and the name of the new column. 

var <- aggregate(germdata["Germination"], by=germdata["Treatment"], FUN=var)

names(var)[names(var)=="Germination"] <- "GermVar"

var

   Treatment  GermVar

1          1    1.093



2          2    1.122

3          3   24.773

4          4   19.737

5          5    4.775

stdev <- aggregate(germdata["Germination"], by=germdata["Treatment"], FUN=sd)

names(stdev)[names(stdev)=="Germination"] <- "Stdev"

stdev

   Treatment   Stdev

1          1   1.093

2          2   1.122

3          3  24.773

4          4  19.737

5          5   4.775



Ex. 2: Combine into a Single Table

Now we can combine these into a single table for easy reference. 

Summary<-cbind(means, var$GermVar, std$Stdev)

Summary

   Treatment  GermVar

1          1    1.093

2          2    1.122

3          3   24.773

4          4   19.737

5          5    4.775

You can leave the column names as is, but there is a simple way of renaming them using the “plyr” package: 

library(plyr)

Warning message:

package 'plyr' was built under R version 3.1.1

Summary<-rename(Summary, c("var$GermVar"="GermVar", "stdev$Stdev"="Stdev"))

Summary

   Treatment  GermMean  GermVar     Stdev

1          1     12.04    1.093  1.045466

2          2     24.92    1.122  1.059245

3          3     39.74   24.773  4.977248



4          4     56.48   19.737  4.442634

5          5     75.70    4.775  2.185177



Ex. 2: Graph Means and Variance

For this next step, we want to graph the treatment means and the treatment variances on the same graph.

Normally in R, making a bar graph is very straightforward, but in this case we have two variables to plot at the

same time so the code becomes a little more complex. Before we can do anything however, we have to

manipulate the data set into a format that R can read in order to give us the output that we want. You will need

to utilize the package “reshape2”. 

library(reshape2)

From here, you can use the following code to melt your data from the wide format, to the long format. We only

want means and variances for this next bit, so we are only including those variables in our new melted data set. 

Summary.melt <- melt(data = Summary, id.vars=c('Treatment')

+                     measure.vars=c('GermMean','GermVar'))

Summary

    Treatment  variable   value

1           1  GermMean  12.040

2           2  GermMean  24.920

3           3  GermMean  39.740

4           4  GermMean  56.480

5           5  GermMean  75.700

6           1   GermVar   1.093

7           2   GermVar   1.122

8           3   GermVar  24.773

9           4   GermVar  19.737

10          5   GermVar   4.775



Ex. 2: Reshape Data

Reshaping data can take some practice; the melt function is not always intuitive and it can take a while to

manipulate your data set into the desired format. There is another way of achieving the same results with

another package called “reshapeGUI”. After you install the package , open the library and then use the

code reshapeGUI() to open a more friendly graphic user interface. Here, you can actually see what is happening

to your data as you select your data set and then choose the ID and Measure variables in the ‘melt’ tab. 

library(reshapeGUI)

Loading required package: gwidgets

Attaching package: 'gwidgets'

The following object is masked from 'package:plyr':

     id

Loading required package: gwidgetRGtk2

Loading required package: RGtk2

Warning message:

package 'reshapeGUI' was built under R version 3.1.1



Ex. 2: Reshape GUI

reshapeGUI 



Ex. 2: Preview Result

You can hit the preview button to see what your data will look like. The Execute button will actually run the code

you have generated, but if you want to save the code itself, you can copy and paste it into a script editor.

Now we can start plotting our means and variances. The package “ggplot2” has a lot of versatility in visualizing

data, so we will use this package: 

library(reshapeGUI)

Now use this code to create a bar plot that includes both the treatment means and the treatment variances and

also includes some nice color and a graph title: 

means.var.varplot <- qplot(x-Treatment, y=value, �ll=variable, data=Summary.melt, geom="bar", stat="identity",

position="dodge", main="Barplot of Means and Variance of germination for 5 treatments")

means.var.barplot

This gives us this graph: 

Fig. 9 Barplot of Means and Variance for Germination for 5 Treatments



Remember how one of the assumptions of the ANOVA is equal variances across the treatments? Looking at this

graph here, we can clearly see that this is not true of this data set. The variances for treatments 3 and 4 are

much higher than the other treatments, and this should prompt you to explore this further.



Ex. 2: Scatter Plot to Visualize Data

Another way to visualize this data is to plot the variances against the means in a scatterplot which can be done

using ggplot2 with the following code: 

means.var.scatterplot <- qplot(data=Summary, x=GermMean, y=GermVar,

+                             main="Scatterplot of germination means against germination variances") +

+                             geom_point(size = 5)

means.var.scatterplot    

And the graph looks like this: 

Fig. 10 Scatterplot of Germination Means Against Germination Variances



Ex. 2: Bartlett's Test

As we saw with the bar graph, treatments 3 and 4 clearly have greater variances than the other treatments in the

data set. However, this is not enough evidence to prompt data transformation, and a different test should be run

to be sure.

Running the Bartlett’s test for homogeneity of variances:

This test lets us test to see if the variances between treatments are signi�cantly different enough to warrant a

data transformation. It uses the formula:

Bartlett's Test for Homogeneity of Variance

where: 

df = degrees of freedom associated with each treatment

n = number of treatments

= pooled error variance

= error variance for treatment i 

Equation 4



Ex. 2: Conclusions

This tests the null hypothesis that all treatment variances are equal, and the calculated chi-square value is

compared to the critical value which is based on the degrees of freedom. When it comes to interpreting the test,

there are several possible outcomes based on the p-value:

• If the p-value is >0.01, then we accept the null hypothesis and don’t transform the data

• If P<0.001, the null is rejected and we need to transform the data

• If 0.01>P>0.001, then you must try to �gure out whether there is any reason why the data would not meet

the requirement of heterogeneity of variances, otherwise, we don’t transform the data.

Performing Bartlett’s test in R is very easy and can be done with one line of code

bartlett.test(Germination~Treatment, germdata)

Bartlett test of homogeneity of variances

data: Germination by Treatment

Bartlett's K-squared = 13.4583, df = 4, p-value = 0.009241

Looking at these results, our p-value falls between 0.01 and 0.001, which is the range in which you must decide

if there is a theoretical basis for transforming the data or not. Since our experimental data is expressed in

percentages (which often leads to unequal variances), we can conclude that the variances are not homogenous

and we do have a reason for transforming this data set.



Data Transformation

3 Main Transformations

There are 3 main transformations to achieve more constant variance

Data which fail to conform to assumptions regarding independence of variance and mean, independence of

standard deviation and mean, or additivity may be transformed using one of many transformations. The most

common three methods are shown in below Table.

Different conditions have different mathematical relationships which can be used to produce constant variance

after transformation. We will examine some of these further.

Table 3 Transformations

Condition Transformation Types of Data

Standard deviation proportional to

mean

natural log, ln(y) growth data and counts with a wide range

of values

Variance proportional to mean square root,  small whole number data, counts of rare

events

S2 from binomial data arcsin  percentages, proportions

https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/data-transformation/square-root-when-use-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/data-transformation/square-root-when-use-0


Natural Log: When to Use

The Natural Log Transformation 

The natural log transformation is appropriately used to transform data where the standard deviation of

treatments is roughly proportional to the means of those treatments. It is also appropriate where effects appear

to be multiplicative, rather than additive. This kind of transformation is most often necessary when dealing with

growth data, where differences between plants become more obvious as their mean size increases.

For example, review the data set in Table 4.

Table 4 Untransformed data

Block 1 2 3 4 5

1 10.35 16.80 28.86 38.84 36.85

2 12.14 16.68 26.68 39.14 49.04

3 12.04 19.75 29.07 35.39 57.72

4 10.26 16.18 28.35 32.36 50.47

5 9.14 18.68 25.06 38.55 40.07

Mean 10.79 17.62 27.60 36.46 46.83

Std.Dev. 1.28 1.52 1.70 2.72 8.40

https://pbea.agron.iastate.edu/natural-log-transformation
https://pbea.agron.iastate.edu/natural-log-transformation


Data before Transformation

It is clear from looking at the data set that the standard deviation differs among treatments. A plot of the

standard deviations by treatment means reveals that the standard deviation tends to increase with treatment

mean. (Fig. 11) 

Fig. 11 Untransformed data: the standard deviation of the individual treatments increases with the mean of the treatment.



Transform using Natural Log

If the Bartlett’s test con�rms that these differences in standard deviation are signi�cant, then we should

transform these data using the natural log transformation. This gives us the data set and plot below.

The transformation thus can be used to reduce the apparent relationship between the standard deviation and

the means of the treatments.

Table 5 Transformed data

Block 1 2 3 4 5

1 2.34 2.82 3.36 3.61 3.61

2 2.50 2.81 3.28 3.67 3.89

3 2.49 2.98 3.37 3.57 4.06

4 2.33 2.78 3.34 3.48 3.92

5 2.21 2.93 3.22 3.65 3.69

Mean 2.37 2.87 3.32 3.59 3.83

Std.Dev. 0.12 0.09 0.06 0.08 0.18

Fig. 12 Transformed data: the standard deviation of the individual treatments is much better behaved after

transformation.





Square Root: When to Use

The Square Root Transformation 

The square root transformation is most often necessary in dealing with counts of rare events — those with a

very low probability of occurring in any one individual. Such counts tend to follow a Poisson distribution

instead of a normal distribution. The mean tends to increase as the number of observations greater than zero

increases. The result of such a distribution is that the variance tends to be proportional to the mean. This

distribution might arise if we were dealing with insect counts, as your book suggests, or perhaps if we were

sampling weed populations in a particularly “clean” �eld.

For example, review the data set in Table 6.

Table 6 Untransformed data

Block 1 2 3 4 5

1 7.37 27.71 47.01 58.04 72.32

2 12.80 37.12 58.95 71.43 86.79

3 11.50 34.86 56.09 68.22 83.32

4 11.16 34.27 55.35 67.39 82.42

5 8.46 29.60 49.42 60.74 75.24

Mean 10.26 32.71 53.36 65.17 80.02

Std.Dev. 5.09 15.29 24.63 30.96 36.18

https://pbea.agron.iastate.edu/square-root-transformation
https://pbea.agron.iastate.edu/square-root-transformation
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/poisson-distribution
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/poisson-distribution


Poisson Distribution

The Poisson Distribution has the equation form:

where, you are calculating the probability of a certain number in a distribution of mean µ and variance µ.

! - Factorial explanation

k! = k × k – 1 × k – 2 ... × 1

For example: 4! = 4 × 3 × 2 × 1 

Fig. 13



Fig. 14



Data before Transformation

It is clear from looking at the data set that the variances differ greatly among treatments. A plot of the

variances by treatment means reveals that variance tends to increase with treatment mean (Fig. 15). 

Fig. 15 Untransformed data: the variance of the treatments seems to be proportional to the mean of the treatments.



Transform using Square Root

If the Bartlett's test con�rms that these differences in variance are signi�cant, then we should transform these

data using the square root transformation. This gives us the data set and plot at right.

It is easy to see that the transformation has reduced the relation between variance and mean.

Table 7 Transformed data

Block 1 2 3 4 5

1 2.71 5.26 6.86 7.62 8.50

2 3.58 6.09 7.68 8.45 9.32

3 3.39 5.90 7.49 8.26 9.13

4 3.34 5.85 7.44 8.21 9.08

5 2.91 5.44 7.03 7.79 8.67

Mean 3.19 5.71 7.30 8.07 8.94

Std.Dev 0.13 0.12 0.12 0.12 0.11

Fig. 16 Transformed data: the variance of the treatments now have no apparent relationship to the mean.



Arcsine: When to Use

The Arcsine Transformation

The arcsine transformation is most often necessary on data expressed as a percentage or proportion. These

data are most likely to conform to a binomial distribution, where the variance tends to be greater near the

center of the distribution.

For example, observe the following data set (Table 8)

Table 8 Untransformed data

Block 1 2 3 4 5

1 38.75 68.20 59.63 59.39 83.93

2 30.64 34.68 50.96 72.17 83.65

3 43.42 51.45 49.60 73.44 93.05

4 52.41 62.91 57.15 77.48 85.44

5 51.73 44.03 58.91 73.74 84.82

Mean 43.39 52.25 55.25 71.24 86.18

Variance 83.72 186.18 21.62 47.85 15.24

https://pbea.agron.iastate.edu/arcsine-transformation
https://pbea.agron.iastate.edu/arcsine-transformation
https://pbea.agron.iastate.edu/binomial-distribution-0
https://pbea.agron.iastate.edu/binomial-distribution-0


Data before Transformation

It is clear from looking at the data set that the standard deviation differs among treatments. A plot of the

standard deviations by treatment means reveals that the standard deviation tends to increase with treatment

mean. (Fig. 17) 

Fig. 17 Untransformed data: the variance tends to fall away from the center of the distribution.



Transform using Arcsine

If the Bartlett's test con�rms that these differences in variance are signi�cant, then we should transform these

data using thearcsinetransformation. This gives us the data set and plot at right (Table 9 and Fig. 18)

It is easy to see that the transformation has reduced the relation between variance and mean.

Table 9 Transformed data

Block 1 2 3 4 5

1 38.50 55.67 50.55 50.41 66.37

2 33.61 36.08 45.55 58.16 66.15

3 41.22 45.83 44.77 58.98 74.71

4 46.38 52.48 49.11 61.67 67.57

5 45.99 41.57 50.13 59.17 67.07

Mean 41.14 46.33 48.02 57.68 68.37

Variance 28.66 63.26 7.18 18.23 12.86

Fig. 18 Transformed data: the previous variance trend has been removed leaving a more uniform distribution.



Ex. 3: Data Transformation using Angular

Generally the most appropriate data transformation for percentage data is the angular or arcsine

transformation. In this exercise we will transform the germination data using the angular transformation in

Excel.

The angular transformation is more complicated to calculate than appears on the surface. Although we will

calculate it using a single equation, the calculation actually involves the following steps:

1. The percentage data are converted to proportions by dividing by 100.

2. The square root of the proportion is taken using the SQRT function.

3. The arcsine of the square root is taken using the ASIN function.

4. Convert from radians to degrees by multiplying by (180/PI). This last step is not required. Either degrees

or radians give the same results. However, converting back to degrees makes the transformed data look

more like the original data - only compressed.



Ex. 3: Natural Log Transformation

Once you have decided how to transform the data, this can be done quickly in Excel. Using the germination

percentages found in the Exercise 12.1 data, follow these steps. In each case, you will need to create a new

column heading. Since you will likely be importing these data into R, it is easiest to give them a one-word

heading. Don’t worry about originality — just select something simple that will be easy to use in R code.

The Natural Log Transformation

The natural log is sometimes referred to as “Ln”, so change the title of column D to “LnGerm.” Below that, type

in “=ln(C2)”. Select that cell, then double click on the tiny box in the right hand corner to copy down the rest of

the data. Your table should look like the one below. 

Fig. 19 Natural Log Transformation Table

https://pbea.agron.iastate.edu/files/qm-mod12-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod12-ex1dataxls


Ex. 3: Square Root Transformation

The Square Root Transformation

Change the title of column E to “SqRtGerm” (real original, see?). Below that, type in “=sqrt(C2)”. Select that cell,

then double click on the tiny box in the right hand corner to copy down the rest of the data. Your table should

look like this: 

Fig. 20 Square Root Transformation Table



Ex. 3: Arc Sin (Angular) Transformation

The Arc Sin (Angular) Transformation

The arc sin transformation is somehow-legitimate statistical voodoo. There is a whole lot going on, converting

percentages to proportions, taking the square root and arcsin, and the converting from radians to degrees.

Change the title of column F to “AsinGerm. Below that, type in “=asin(sqrt(C2/100))*180/PI()”. Select that cell,

then double click on the tiny box in the right hand corner to copy down the rest of the data. Your table should

look like the one at right. 

Fig. 21 Arc Sin Angular Transformation Table



Ex. 3: Data Transformation using R

So what kind of data transformation should we perform? There are many different ways, and each type of

transformation is appropriate in different circumstances. We will explore only 3 of them in this activity.

The Natural Log Transformation

This transformation is good for when the standard deviation of the treatments is more or less proportional to

the means of the treatments and where the effects seem to be multiplicative instead of additive.

R code:

1nGerm<-log(Germination)

The Square Root Transformation

This is most often used when the data consists of counting rare events and tends to follow a Poisson

distribution, not a normal distribution. In this instance, the variance tends to be proportional to the mean. R

code:

sqrtGerm<-sqrt(Germination)

The Arcsine (Angular) Transformation 

This is typically used on data that is expressed in percentages or proportions because they are more likely to

have a binomial distribution where the variance tends to be greater at the center of the distribution. Calculating

the arcsine transformation is a bit tricky and involves several steps:

• Percentage data is divided by 100

• Then the square root is taken

• Then the arcsine is taken

• The last step of converting from radians to degrees is optional and is done by multiplying by 180/pi

R code:

asingerm<-asin(sqrt(Germination/100))*180/pi



Ex. 3: Combine All Transformations in One Table

We can combine each of these transformations into a single table with the following code: 

transform<-cbind(germdata[,1:3], lnGerm, sqrtGerm, asinGerm)

transform

    Treatment  Rep  Germination    lnGerm  sqrtGerm  asinGerm

1           1    1         12.7  2.541602  3.563706  20.87747

2           1    2         11.3  2.424803  3.361547  19.64277

3           1    3         13.4  2.595255  3.660601  21.47284

4           1    4         10.8  2.379546  3.286335  19.18586

5           1    5         12.0  2.484907  3.464102  20.26790

6           1    1         25.9  3.254243  5.089204  30.59195

7           1    2         24.5  3.198673  4.949747  29.66809

8           1    3         26.2  3.265759  5.118594  30.78776

9           1    4         23.9  3.173878  4.888763  29.26675

10          1    5         24.1  3.182212  4.909175  29.40090

In the previous part of the activity, the Bartlett’s test showed us that our variances were not homogenous and

therefore, we should transform the data. Since we have percentage data and our scatterplot of the means and

variances shows that the variance tends to be greatest in the center of the distribution, the arcsine

transformation is most appropriate for our data.



Ex. 3: Bartlett's Test and ANOVA

Once we have transformed our data, we can run Bartlett’s test again with the new data: 

bartlett.test(asinGerm~Treatment, germdata)

Bartlett test of homogeneity of variances

data: asinGerm by Treatment

Bartlett's K-squared = 9.7311, df = 4, p-value = 0.04521

Since our p-value is now >0.01, it is safe to assume that the variances are homogenous and we can proceed to

the ANOVA. Use this formula so we can calculate LSDs next. For some reason, using the anova(lm()) format

doesn’t work for calculating LSDs in R.

anovasin<-aov(asinGerm~Treatment, data=transform)

summary(anovaasin)

             Df  Sum Sq  Mean Sq  F value  Pr(>F)

Treatment     4    4930   1232.4      331  <2e-16  ***

Residuals    20      74      3.7

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

According to the ANOVA, the chances of getting this F-value or a higher one are very small (P<0.0001) and we

can conclude that there are one or more differences among the different treatments.



Ex. 3: LSD and Conclusions

To take a closer look at the differences between the treatments, we can calculate the least signi�cant

difference and see which of the treatment means differ. 

library(agricolae)

LSD.Treatment<- LSD.test(anovaasin, "Treatment")

LSD.Treatment

$Statistics

    Mean        CV   MSerror       LSD

39.70057  4.860259  3.723166  2.545616

$parameters

  Df ntr   t.value

  20   5  2.085963

$means

    asinGerm        std  r       LCL       UCL       Min       Max

1   20.28937  0.9196122  5  18.48934  22.08939  19.18586  21.47284

2   29.94309  0.7002702  5  28.14307  31.74311  29.26675  30.78776

3   39.05297  2.9304004  5  37.25295  40.85299  35.00061  42.13041

4   48.73486  2.5682770  5  46.93484  50.53488  45.80225  51.23710

5   60.48258  1.4479205  5  58.68255  62.28260  58.24367  61.95880



$comparison

NULL

$groups

   trt     means  M

1   5   60.48258  a

2   4   48.73486  b

3   3   39.05297  c

4   2   29.94309  d

5   1   20.28937  e

Based on this output, we can see that the least signi�cant difference is ~2.55 and each of our treatment means

have been placed in their own group which means that each treatment is signi�cantly different from each other.

Treatment 5 has the best germination, while treatment 1 (the control) has the worst germination.

The last thing to be done is to transform the means back to their original scale. Since we used

the arcsine function, this is the code to transform the data: 

inverse<-(sin(asinmeans$asinGermMean*(pi/180)))^2*100

inverse

[1] 12.02436  24.91403  39.69486  56.50011  75.72583

Review Questions



Why is it sometimes necessary to transform data?

How do you decide which method of transformation is appropriate?



Summary

Analysis of Variance Assumptions

• Errors are independent with normal distribution.

• Error variances are constant and independent of treatment means.

• The additive model is correct.

Bartlett's Test

• Tests for heterogeneity of variance

• Accept H0 : Variances are similar if the P-value is greater than 0.10 and reject if less than 0.01.

Normal Quantile Plot

• Visual veri�cation of normal distribution.

Data Transformations

• Three transformations for constancy of variance.

• Natural log (ln) if standard deviation is proportional to mean.

• Square root if variance is proportional to mean.

• Arc Sine (√y) if percentage or binomial proportion data. (y = proportion.)

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/assumptions-anova
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/assumptions-anova
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/assumptions-anova
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/bartletts-test
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/bartletts-test
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/bartletts-test
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/ex-1-plotting-variance-against-means
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/ex-1-plotting-variance-against-means
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/ex-1-plotting-variance-against-means
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/3-main-transformations
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/3-main-transformations
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/data-transformation/3-main-transformations


Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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