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Introduction

Overview

In the �rst module, we learned about the scienti�c

method, principles in the design of experiments,

and how descriptive statistics summarize data,

especially the center and spread of a distribution. In

this module, we extend these topics, looking further

into how to draw samples from populations and

some possible distributions of random variables.

An old saying warns that it is "sometimes di�cult to

see the forest for the trees." The same situation can

arise with experimental data. Even with a well-designed experiment, special skill is needed to understand the

mountains of data which are produced. We must pay attention to the variability of the data and the distribution

of values. By plotting data and looking for overall patterns in the data, we can improve our understanding of the

results.

Fig. 1 A digital caliper is one instrument used in collecting

data about a population. (Photo: Lior Streng. Licensed under

GFDL via Wikimedia Commons)



Objectives

• How sampling can affect your view of a population

• How to use Excel to produce a frequency histogram

• How to interpret frequency histograms and percentiles

• How to recognize the normal distribution

• How to determine the z-value for a member of the population

Fig. 2 Soil sampling near Iowa City, IA. Photo by U.S. National Resources Conservation Service.



Samples & Populations

How to Sample

SAMPLING CONDUCTED IN A DESIGNED EXPERIMENT

The way a population is sampled or an experiment is designed and conducted affect the conclusions that we

can draw.

One of the �rst considerations for any experiment is

the objective of the experiment. In the module on

Basic Principles we saw how the scienti�c method

is an iterative process, and that hypotheses are

formed and tested as part of the overall scienti�c

goal. Once the scientist decides on an objective, he

or she carefully considers what design to use for

the experiment. We saw earlier that the principles of

randomization, replication and controlling

extraneous variables are important in experimental

design. Not only does the experiment need to be

well-designed, scientists must take measurements

very carefully, and all aspects of the conduct of the

experiment must be done as meticulously as

possible, to ensure that the experiment can achieve

the objectives.

To draw conclusions from the experiment, we need

to understand the nature of the data and to decide

on a proper statistical analysis. Data can be

continuous, count data, or even form classes (categorical). It is from the nature of the data that we can make

probability statements.

Fig. 3 Careful measurement and recording is key to

achieving the objectives of any experiment.



Sample Represents a Population

SAMPLING TO CHARACTERIZE
A POPULATION

An experiment is usually conducted in order to gain

information about a population. What is a

population? It can be many things: all farmers in the

United States, the corn produced in Marshall

County, Iowa, or the plants in a 20-acre (8-hectare)

soybean �eld. It is important to understand the

scope of your population because it de�nes the

population to which your results apply. If for

instance, the samples you collected are from a

single 20-acre (8 ha) soybean �eld, then the only

inferences you can make apply to that single �eld.

If, however, you sampled several �elds within a

watershed you could extend your inferences to the

entire area.

We seek to describe parameters, or characteristics of that population. Ideally, we would like to evaluate every

unit within that population, but this is often impractical — i.e., it would be expensive and time-consuming to

contact every farmer in the country, and the testing of all of the soil in a �eld would require the permanent

removal of hundreds of tons of topsoil.

We often resort to taking a sample, or set of measurements, from the population. This sample is more likely to

accurately represent the population if we randomize our samples — that is, if we take soil samples randomly

from different sections of the �eld, rather than from one section. For example, would a measurement of soil pH

represent a whole �eld if all samples were taken near the edge of a �eld, next to a limestone road?

Fig. 4 A population is any group of individuals about which

data is sought.
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Randomization

RANDOMIZATION IS IMPORTANT

Therefore, we often resort to taking a sample, or set of measurements, from the population. This sample is

more likely to accurately represent the population if we randomize our samples — that is, if we take soil

samples randomly from different sections of the �eld, rather than from one section. For example, would a

measurement of soil pH represent a whole �eld if all samples were taken near the edge of a �eld, next to a

limestone road?

Even careful selection of sampling sites and using

proper and careful procedures in taking the sample

can produce values which do not represent the

whole population. In the late spring of 1998 (a

relatively wet spring in Central Iowa) a soil sample

was taken from the Iowa State University Agronomy

Farm to measure the soil moisture content. The 5 ft

(1.5 m) soil core suggested that only 3 in. (7.6 cm)

of water were available in the pro�le. This was

judged as far too low; site �eld capacity was around

10 in. (25.4 cm). Sampling at another point in the

�eld indicated 8 in (20 cm) of water in the pro�le. Apparently the sampler hit a core of sand which drained very

quickly and produced non-representative results despite careful sampling methods. This is why replication and

critical review of the data is necessary.

Fig. 5 Soil sampling is subject to error brought on by

locations of samples.

https://pbea.agron.iastate.edu/randomization-4
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Try This: Assess a Population by Sampling

Many issues become apparent when trying to assess the parameters of a population by sampling. In this

hypothetical example you will assess the mean and variability of potassium in a �eld.

The �eld in this example is the 480 acre (194 ha)

�eld illustrated in Figure 6. In that �gure, color

variation depicted variation in potassium levels

measured in parts per million (ppm), with red

representing 450 ppm, yellow as 300 ppm, and

green as 150 ppm. The �gure illustrated that

potassium levels vary depending on soil properties.

However, in the illustration below we can see that

different areas of the �eld vary much more widely

than implied in the original �gure. Even within the

broader pattern of major soil variants, here the

darker shades indicate higher levels of potassium

and lighter shades indicate lower ones. Fig. 6



Try This: Assess a Population

Click on the �eld to sample that location. Select sets of locations to calculate an average potassium value for

the �eld. For example, a set with 300, 150, and 450 would result in a mean of 300.

What does this suggest about how to design a sampling scheme to best represent the “population” mean value

for the �eld? What happens when you increase the number of samples or vary their location? Would it be better

to be random in your sampling scheme or systematic?

If you do this computation several times, pressing the Reset button between sets, you will notice that variation

in the calculated average value occurs depending on where the samples are drawn.



Study Question 1

A Sample Represents a Population

Do samples deliberately drawn from a particular area of a larger �eld more accurately represent a
population than samples that are randomly drawn throughout the �eld?   A measurement of soil pH
represents a whole �eld if all samples were taken near the edge, next to a limestone road.

False

True

 Check



Discussion

Where did you sample? How many samples did you need to understand the

variability? What other issues are involved in sampling?

Fig. 8



Accurate Samples

Our sampling example illustrates that it can be hard to get a sample to accurately re�ect the population.

We see from the example in the previous screens that it is di�cult to get a representative sample for measuring

an underlying parameter of the population, such as the average potassium concentration in an entire �eld.

Taking three observations, and calculating a mean from them, better represents the true population mean than

would an individual value. More than three observations would be even better.

It is generally better to take a random sample than a systematic one. Random samples provide a method to get

unbiased estimates of population values. W.G. Cochran gives an example illustrating this on page 121 of his

book Experimental Designs, co-authored with Gertrude Cox. Even experts have a bias when trying to select a

representative sample.

In an experiment to measure the heights of wheat plants in England, several expert samplers chose what they

thought were eight representative plants from each of six small areas containing about 80 plants. Every expert

ended up choosing samples taller than the average of all the plants in the area. Of the 36 total samples, only 3

had shorter average wheat height than the corresponding area. Samplers averaged from 1.2 cm to nearly 7 cm

over the actual height for systematic samples compared with the actual average for the six plots. It is likely that

their eyes were drawn to the taller plants. A properly conducted random sampling scheme would have avoided

this bias.



Histograms & Percentiles

Purpose of Histograms

The frequency histogram gives a “picture” of the population. Once data are collected, we wish to understand the

nature of the data better, and one method is to picture the data distribution with a histogram. The histogram is a

diagram which gives frequencies of occurrence of data points on one axis and the values of the measurements

on a second axis. In the frequency histogram, the value (height) of each bar is the number of variates (samples)

that have that value or fall in that data range. An example is given here in Figure 9.

The histogram gives the overall pattern of the data.

It shows how spread out the data is, and which

values occur most frequently. It also shows the

potential outliers, or unusual data values.

Fig. 9 An example of a frequency histogram.



Creating a Histogram

Proportions of datasets can be viewed in histograms.

One can view in the histogram the proportion of data less than or greater than a given value. We can also �nd

values for which, say, 10% of the observations will be less than that value. This de�nes the “10th percentile” of

the distribution. The median is the 50th percentile. Other useful percentiles are the �rst quartile (25th

percentile) and third quartile (75th percentile).

The following exercise will use the Weldon, Illinois (USA) data provided in the Excel �le named QM-mod2-

ex1data.xls. For this exercise we will use Weldon Root Pulls Set 4552 worksheet in the �le. In the homework in

the module on Central Limit Theorem, Con�dence Intervals, and Hypothesis Tests, we will use a second dataset

located in this same Excel �le, but in a different worksheet. For a portion of the homework assignment, instead

of the Weldon data we will use data from Slater, Iowa (USA) found in worksheet titled Slater Root Pulls Set

4552.

https://pbea.agron.iastate.edu/files/qm-mod2-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod2-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod2-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod2-ex1dataxls


Ex. 1: Using Histograms (1)

An example on the use of histograms for exploratory data analysis

Our company entomologist called to ask me a question about data. One of his technicians, after using

equipment to record root-pull data, thought values taken for the Slater, Iowa location were too high. Root-pull

data are taken with a data recorder connected to an electronic load cell. A boom on a front-end loader of a

tractor is hitched by cable to corn plants, and the force required to pull plants from the ground is recorded from

the load cell. Entomologists can then select for corn hybrids with stronger root systems, sometimes even

infesting with corn rootworm eggs to select hybrids effective against these pests. But, to correctly select, we

must have good measurements.

We decided to compare the measurements obtained from the Slater location with those taken the week before

from a location near Weldon, Illinois. The entomologist asked for histograms of the distributions of the root-pull

measurements from each location, means, standard deviations, quantiles and medians for the data. In

particular, he wanted to know if his group should stop additional root pulling at Slater because of poor quality

data.

Typically, we need to do some work to get the data into correct form to do statistical analysis.

The scientists provided data to me in an Excel �le. My �rst step was to get the data for each location into a

separate worksheet, with titles of each variable in the �rst row. I then went through the following steps, which I

request that you do in the following exercise.



Ex. 1: Using Histograms (2)

Open the data table in the Excel �le named QM-mod2-ex1data.xls. Choose the Weldon worksheet. Because

Weldon was the �rst location on which data were taken, we want to examine this distribution and later compare

it with our Slater data.

First, we need to inspect the data. For example, we need to ensure the data for any particular characteristic are

not a mixture of character and numeric values. If there is a mixture, it may be necessary to modify data in the

Excel worksheet. Also, for future use of SAS or R software or other statistical analyses it is important to keep

names of the variables as the �rst row in the Excel spreadsheet, with appropriate data arranged in the rows

below each column. Other text or headings in the Excel spreadsheet can mess up your data analyses when

transferring the data to another analysis program.

Notice that there are columns for entry (corn hybrid

number), rep, and plot within the rep. There are 22

corn hybrids in each of the 3 reps (blocks) of this

experiment. Root pull measurements are recorded

for 8 plants within each row for each plot.

For a detailed description of how to create a

histogram in Excel, go to Excel Help under the File

tab and search for histogram. The �rst option gives

a step-by-step description.

Fig. 10

https://pbea.agron.iastate.edu/pbea/files/qm-mod2-ex1dataxls
https://pbea.agron.iastate.edu/pbea/files/qm-mod2-ex1dataxls


Ex. 1: Using Histograms (3)

Fig. 11 Scroll down to Histogram and select that option.

Fig. 12 Enter the pull data, select the Chart Output option, and click OK



Fig. 13 View the histogram and chart data



Ex. 1: Using Histograms (4)

Now that we have the histogram, how do we interpret it?

The histogram visually shows the distribution of the root pull values, ranging from low of 62 to high of 555

pounds (you wouldn't want to try to hand pull that one). The �rst quartile, as the name suggests, is the value

below which 25% of the distribution lies. For the Weldon root-pull distribution, 25% of the values are less than

165.50. The median is the second quartile (227.75 in this example) and the third quartile is the value below

which 75% of the distribution lies (294.02).

Quartiles can be easily calculated in Excel. Select an empty cell and enter the formula “=Quartile(D2:K67, 1)” for

the �rst quartile (25th percentile). The "1" in this function will give you the �rst quartile, a "2" will give you the

second quartile, and a "3" will give you the third quartile. The median can be calculated using 2 in the formula

instead of 1, and the 3rd quartile can be calculated using 3 in the formula.

In general, quantiles are the values below which a certain proportion of the distribution lies. For example, the

90th percentile is the value below which 90% of the distribution lies (347.92 in this case).

The maximum and minimum values of a sample can be found using the "Max" and "Min" formulas, respectively.

The distribution of root pulls tapers off toward each extreme, with only a few values higher than 400 or lower

than 100 pounds. The mean is 233.78, very close to the median, and the standard deviation is 87.89. It is the

shape of this distribution and its summary statistics which we will use to compare with the data from Slater.

What about getting the output into a Word document?

You can use copy and paste or cut and paste to get portions of the output into other programs such as

Fig. 14 Histogram of root pull values.



Microsoft Word. Always place your analyses into Word documents before submitting them.



Probability

Taking a Random Sample

When an experiment is performed, there is frequently a chance that the value observed from a trial will differ

from the previous observation, even when the environment is the same. Consider four soil samples taken

throughout a �eld. The farmer wishes to apply the fertilizer evenly throughout the �eld, so all samples are

considered to have been taken from the same environment. When the soil samples are analyzed, it is

determined that the pH differs for each of the four samples. The differences in pH between soil samples are

due to variables that cannot be controlled in the trial or experiment. When a trial or experiment is affected by

variables that cannot be controlled, it is called random.



Sample Space

Within every random experiment there exists a sample space. This is a mathematical space; you could think of

the sample space as the area on a graph from which all possible observations could be drawn. The pH

measurements from the soil samples exist in a one-dimensional sample space of all possible pH

measurements (Fig. 15).

Fig. 15 Sample space associated with pH observations



Events

The sample space of an experiment contains subsets called events. In the soil sample experiment, each event

is a measurement of a particular pH. Since pH is a continuous measurement and therefore more complex, let’s

use the example of a trait that differs between plants due to one gene. Each gene has slight changes within its

makeup that causes differences between plants. Each of these forms of the gene can be differentiated and are

called alleles. For this example, let’s say that there are two alleles segregating in a population. In other words,

there are two possible outcomes to each trial, and the sample space is made up of these two possible

outcomes. The results of the test can be that the allele form is A1 or A2 and the sample space is called A. An

event in this case is the observation of either A1 or A2 from sample space A.



Defining Sample Spaces

DEFINING SAMPLE SPACES AND EVENTS OF INTEREST

It is possible to imagine that there are more than two alleles of gene A in the segregating population. However,

it’s important to understand that this is an example of de�ning a sample space and events of interest. This

decision is usually made from previous information about the observations being taken or the environment. The

population of interest may be known to the researcher, and they know that there are only two alleles of gene A

in the population. In reference to the soil sample experiment, there aren’t any pH scores higher than 14. This

results in a de�ned sample space of 0 ≤ pH ≤ 14. These sorts of de�nitions are common throughout

mathematics and statistics. It is necessary to make some limitations on possibilities to allow an experiment to

be analyzed.



What Is Probability?

In a random experiment, there is uncertainty about

what the outcome will be. The outcome will be

within the sample space, but where in the sample

space remains uncertain until the observation is

made. It is useful to be able to measure how likely

an event is to occur during an experiment. The

measure of the expectation that an event will occur

during an experiment is called the probability.

Probabilities have classically been calculated as the

ratio of the number of times an event occurred to

the total number of events. If an event occurs h

times and the total number of observations is n, then the probability of the event occurring is h/n. The sum

across all events in a sample space will be 1. This is a de�ned property of probabilities.

Fig. 16 A dice roll is one of the classic illustrations of

probability. The mean of all possible rolls is 7, and when

tabulating a large number of rolls, the frequency distribution

will center around the number 7.



Mathematical Symbols

MATHEMATICAL SYMBOLS USED IN PROBABILITY EQUATIONS

The symbol ∪  means the “union of” or “or”, so A∪B means the set of those elements that are either in A, or in

B, or in both. Below we will use the symbol, ∩, which means “intersect” or “and”, so A∩B means the set that

contains all those elements that A and B have in common.

Fig. 17 Illustrations of probability terms "intersection" (left) and "union" (right).



Mutually Exclusive

To better understand when events are mutually

exclusive, let’s go back to the classic example of

�ipping a coin. When you �ip a coin, it cannot be

both heads and tails. The events of heads or tails

on the same coin �ip are mutually exclusive. It’s

very common to want to determine the probability

of two mutually exclusive events.

The probability of a �ip resulting in heads (h) or a

�ip resulting in tails (t) is de�ned as:

Pr(h)=0.50

Pr(t)=0.50

Pr(h or t)=Pr(h U t)=Pr(h)+Pr(t)=1
Fig. 18 A coin toss is often used to determine who plays

offense �rst in a sporting event. Photo by the U.S. Navy.



Calculating Probability

CALCULATING THE PROBABILITY ASSOCIATED WITH TWO OR MORE EVENTS

The calculation of the probability of two or more events occurring follows some basic rules that depend on

whether or not the events are mutually exclusive. For example, a chromosome with one copy of gene A cannot

carry A1 and A2 at the same time (Table 1).

However, if two chromosomes are considered, there are two alleles. If these two chromosomes segregate

independently, so the two events that occur are non-mutually exclusive. This is not usually immediately obvious

— for more details, keep reading.

Table 1 Probability of alleles of gene A on a chromosome.

Allele Number of times allele was

observed (n)

Total observations

(n)

Probability of allele

A1 120 200

A2 80 200



Non-Mutually Exclusive Events

When two events can occur at the same, they are not mutually exclusive. Consider the example of two alleles in

a diploid plant, i.e., there is an allele on each of two chromosomes. Gene A has two events, A1 and A2. The

events that occur on each chromosome within a plant are inherited independently of each other and are not

mutually exclusive. Calculating that two events will occur together (either simultaneously or sequentially) is

done by calculating the two probabilities by each other.

Calculating that the two chromosomes will both carry allele A1:

Equation 1



Joint Probability

The probability associated with two independent events occurring is called the joint probability. It is calculated

as the product of the probabilities of each of the events occurring. A common use of joint probability is a

Punnett Square, which is a way of calculating the probabilities and possibilities associated different alleles of a

gene on two chromosomes (Fig. 19).

Fig. 19 Punnett Square



Marginal Probability

Another term for the probability of an event occurring is the marginal probability. The joint probabilities

associated with an event can be summed to the marginal probability (Fig. 20).

Fig. 20 Punnett Square and Marginal Probability



Conditional Probability

A conditional probability can be calculated when it is known that one event has occurred or will occur. It is

calculated as the ratio of both events occurring to the probability of the known event.

Events may not be independent of each other. In this case, the probability of both occurring is not the product.

An example of this would be two linked genes, gene A and gene B. Gene A has the two alleles mentioned

before. Gene B also has two alleles segregating in the population, B1 and B2. Since inheriting alleles at locus A

is not independent of locus B, the probability of any two alleles occurring together on the same chromosome

(the joint probability) has to be determined through the behavior of the two events. For this example, the joint

probabilities have been given. In order to calculate the probability of allele B1 occurring when it is known that

allele A1 is present, the following calculation can be used:

Assume that .

This is exactly how bio-markers are used to determine genetic risk for many human diseases, and it is how

markers are used in selection during plant breeding.

Equation 2

Equation 3



Probability Distributions

Each set of events in a sample space has an associated probability distribution. A distribution is a means of

depicting the frequency with which each event occurs. Along the x-axis are the events, and along the y-axis are

the probabilities from 0 - 1. The probabilities across all events on the sample space equal 1 (or 100%) and the

distribution describes how the probability is allotted across all events. The two types of observations, discrete

and continuous, have different types of probability distributions.



Discrete Distribution

Within a discrete distribution, each event type is clearly de�ned and has a probability assigned to it. The

segregating gene A is an example of a discrete data type. There are two clearly de�ned events, A1 and A2. Each

of these events has a probability assigned to it and those probabilities add to 1. Each of the events serves as a

step in the total distribution. The probability distribution can be seen in Figure 21.

Fig. 21 Probability distribution of alleles of Gene A.



Continuous Distribution

Continuous data types have an in�nite number of possible events in the sample space. For example, a pH

measurement could theoretically be measured to an in�nite number of signi�cant digits. This results in a

necessary change to the probability distribution. When there are an in�nite number of possible events, no single

event has a probability. This situation results in a continuous distribution rather than a distribution comprised of

discrete events. The continuous distribution is derived from an in�nite number of events. The probability of an

event of interest is measured as the area under the distribution to the left or right of the event of interest. That

probability is more commonly called a p-value. The probability distribution for the pH of the soil samples is

given in Fig. 22.

Fig. 22 Probability distribution for pH of soil samples.



Normal Distribution

Most Common, Best-Studied

THE MOST COMMON AND BEST-STUDIED STATISTICAL DISTRIBUTION

In the root-pull examples, we saw histograms of a distribution which had most values concentrated toward the

center and fewer at the extremes. Although not a perfect bell-shaped curve, the curve formed by connecting the

tops of the rectangles in the frequency histogram approximates the shape of a bell. These bell-shaped

distributions, referred to by statisticians as normal distributions, are typical for many types of data, including

plant heights, grain yields, grain moistures, soil nutrient values, and many others.

Mathematicians and scientists �rst noticed and mathematically described the normal distribution in the early

1700s. At that time, many scientists were studying astronomy, and they saw a characteristic bell-shaped curve

in histograms of the errors of their measurements. Abraham De Moivre �rst described the distribution

mathematically in 1733. The famous French mathematician Pierre LaPlace and German mathematical prodigy

Karl Gauss both applied the normal curve to errors of measurement.

https://pbea.agron.iastate.edu/normal-distribution-1
https://pbea.agron.iastate.edu/normal-distribution-1


What it Does

Normal distribution allows us to calculate probabilities of events.

By using this type of a distribution, we can infer a great amount of information and make probability statements

based on the distribution. The probability function for a normally distributed random variable, x, is described

mathematically as:

where:

 = probability function

 = a variatre with normal distribution

 = standard deviation of populaton

 = population mean

 = base of natural logarithm

The probabilities for occurrence of an event, such as corn yields between 150 and 170 bushels/acre (9.4 – 10.7

tons/ha) are found by summing the areas under the distribution, also called integrating the function. The area is

approximated by computer programs which subdivide the area into very small rectangles then sum their areas.

Adhering to the rules of probability, we know the total area under the curve and above the horizontal axis sums

to 1.

Equation 4 Normal Distribution Equation



Basic Parameters

The normal distribution is based on knowledge of two main parameters: the mean and standard deviation.

While the Normal Distribution equation may appear daunting, the main aspect of it is that you can calculate the

probability of ranges of values in a normal distribution by knowing two parameters:

• mean

• standard deviation

Based on knowledge of these parameters, you can substitute their values and predict the outcomes. However,

this assumes that you know the true values for the parameters describing the population. If we do not know the

true values and instead estimate the values from a sample of the population we have to recognize that the

sample could be biased and have some error.



Reasons for Widespread Use

There are four main reasons for the widespread use of the normal distribution:

1. The normal distribution allows probabilities to be assigned to outcomes of an experiment, completing the

experiment process from collecting data to interpreting results using these probabilities.

2. Many variables have distributions close to the theoretical normal distribution.

3. Even variables with other distributions, such as the binomial distribution (e.g., number of seeds

germinating from 400 planted) are reasonably approximated by the normal when samples are large. Other

variables can be transformed to closely follow the normal distribution.

4. Averages from any distribution approach the normal distribution as sample size gets large. This

characteristic is very helpful because we often want to make probability statements about mean

Fig. 23 The normal distribution.



Properties of Normal Distribution

Properties of the normal distribution help us draw statistical inferences.

Properties of the normal distribution include the following:

• The distribution is symmetric about its mean

• Roughly two-thirds of the values (68%) lie within one standard deviation of the mean

• About 95% of the population is within 2 standard deviations of the mean

• Probabilities for intervals of values can be computed

To compute probabilities, for example those in Appendix 1, we only need to use the normal distribution with

mean zero and standard deviation one (μ=0, σ=1). We then convert any value in the population to its number of

standard deviations above or below the mean. For example, if corn yields are normally distributed with mean

150 bushels/acre (9.4 tons/ha) and standard deviation 10, we know that a yield of 140 bushels/acre (8.8

tons/ha) is one standard deviation below the mean. Using property #3, we expect 95% of the values for this

population to be between 130 and 170 bushels per acre (8.2 - 10.7 tons/ha).



Study Question 2

Assume corn yields are normally distributed with mean 150 bushels/acre (9.4 tons/ha) and
standard deviation 10. Between what two yield values would about 68% of the yields lie? µ = 150
bushels/acre σ = 10  

Lower limit (–1 S.D.):   

Upper limit (+1 S.D.): 

 Check



Z-Scores

Definition

Z-SCORES ARE THE NUMBER OF STANDARD DEVIATIONS ABOVE OR BELOW THE MEAN

Knowing the mean and standard deviation of a normally distributed variable completely describes the

population distribution and allows comparison with other populations. It is also useful for evaluating where a

speci�c value occurs in the distribution, how common or how extreme, i.e., how far it occurs from the mean.

These comparisons are evaluated using the z-score (Equation 5). The z-score is de�ned as:

where:

 = value of observation i

 = population mean

 = population standard deviation

The z-scores from a normal population have a standard normal distribution, i.e., a mean of 0 and a standard

deviation of 1. They are dimensionless because the numerator and denominator of the fraction have the same

units, and when doing the division, the units are removed. These facets of the z-score make it useful for

comparing populations with known mean and standard deviation. Any value in a normally distributed population

can be assigned a z-value.

Equation 5



Calculation

AN EXAMPLE OF CALCULATION OF Z-SCORES

Let's look at an example. On July 1 you hear on the radio that daily high temperatures during the month of June

averaged 85.6°F (29.8°C), while the average June daily high temperature over many years is X = 81.6°F

(27.6°C). The 4°F (2.2°C) difference doesn’t seem that large, but how warm is this based on historical June

data? The standard deviation for monthly average high temperatures for Ames, IA in June is about 3.75°F, using

data since 1900. Meteorologists have seen that average monthly high or low daily temperatures are normally

distributed (see Fig. 24). What is the z-score for 85.6°F, and what is the probability of a value this high or

higher?

Fig. 24 Comparing mean temperature in June of one year to

the 100-year mean temperature for June by using Z-scores.

Equation 6



Interpretation

The value of 85.6°F (29.8°C) is just a little more than 1 standard deviation larger than the mean. The probability

for a z-score less than or equal to 1.07 is 0.8577. Since this is the probability less than z, or to the left of z, the

probability of a higher value is 1 - 0.8577 = 0.1423. This means that there is a 14% chance of obtaining a value

larger than 85.6°F June monthly average high. The 85.6°F is somewhat warm, but not extremely so. The

standardization of values produced using the z-score allows comparison of different distributions which is

sometimes di�cult when looking only at raw numbers.

Suppose we want to compute the probability of �nding a value less than 23.3 if it comes from a normal

distribution with mean 27.3 and standard deviation 6.25. Note that here z = (23.3 - 27.3) / 6.25 = -0.64.

By the symmetry of the normal distribution, the probability of a value less than z = -0.64 is the same as the

probability of a value greater than z = 0.64. The probability of a value greater than z = 0.64 is 1 - P(z < 0.64) = 1 -

0.7389 = 0.2611. Therefore, the probability of a value less than 23.3 is 26%.



Study Question 3

Which of these situations is more likely to occur?

A January monthly minimum temperature of 23.3° F (–4.8° C). Mean January monthly minimum

temperature X = 27.3° F (–4.8° C). Standard deviation σ = 6.25° F (3.4° C).
 

A June monthly maximum temperature of 85.6° F (29.8° C). Mean June monthly maximum temperature

X = 81.6° F (27.6° C). Standard deviation σ = 3.75° F (1.6° C).
 

 Check



Second Example

A SECOND EXAMPLE OF CALCULATION OF Z-SCORES

Determining the probability of some value occurring between two values in normal distribution is also possible.

By calculating the z-value of the two numbers, one can calculate the range between them and percentage

chance of that occurrence. If we use the June temperature example in the previous screens, let's �nd out how

often temperatures in June are between plus and minus 4°F (2.2°C) of the mean high temperature (81.6°F or

27.6°C). Also, we make use of the symmetric nature of the normal distribution (see Fig. 25). We found above

that 14% of the time temperatures are greater than 85.6 °F (29.8°C). We then know that 14% of the time

temperatures will be less than 77.6°F (29.8°C). To complete the calculation:

This same calculation can be done for any two values and their associated z-values. We have also illustrated

the comparability of z-values above.

Equation 7

Fig. 25 Normal distribution of z-values.



Normal vs. Non-Normal Distribution

As we can see, for normally distributed data, it is relatively easy to compute probabilities. Not all distributions

follow a normal distribution, however, and become more di�cult to handle. One example is precipitation data

(Fig. 26).

Other methods of computing probabilities are needed for non-normal distributions.

Fig. 26 Daily rainfall values for a single year.



Study Question 4

Look at the �gure and determine whether the following statement is true or false.

The set of data depicted in this graph would follow a normal distribution.

True

False

 Check



Other Distributions

Non-Normal Continuous Distributions

There are many other distributions which do not follow the normal, bell shaped curve. The distribution of rainfall

events (measured from a trace to several inches or centimeters) is an example of a non-normal continuous

distribution. This distribution only takes values greater than zero. As you can see from Fig. 26, the histogram

seems to decrease exponentially.

Other continuous distributions may be skewed rather than symmetric. Some data follow a distribution in which

the logarithm of the variable is normally distributed. These data are skewed to varying degrees. Even symmetric

data, such as from a uniform distribution, do not follow the bell shaped histogram of a normal distribution.

https://pbea.agron.iastate.edu/files/af571610png
https://pbea.agron.iastate.edu/files/af571610png
https://pbea.agron.iastate.edu/files/af571610png
https://pbea.agron.iastate.edu/files/af571610png


Non-Normal, Non-Continuous Distribution

Some data cannot follow a normal distribution because they are discrete and not continuous, for example count

data. We could have a uniform distribution of count data if, for example, corn plants in each 100 square-foot

area (two 30 in. rows, 20 ft. long) planted with a precision planter have 60 plants in each plot.

Another example of count data is for rare events, such as the number of a certain type of weed in these same

100 square-foot plots. Counts of rare events often follow what is called a Poisson distribution. The formula for

this distribution is in Equation 8:

where:

 = probability of count being k

 = population mean

 = base of natural logarithms

In this equation, k! is the product of all integers less than or equal to k, k! = k(k-1)(k-2) . . .(2)(1). The symbol e is

the base of the natural logarithm, approximately equal to 2.71828. It is used to describe exponential growth

phenomena, such as compound interest.

Equation 8



Poisson Distribution Example

An example of the Poisson distribution is given in the text of Robert Steel and James Torrie (1980, Principles

and Procedures of Statistics, 2nd edition), in which the number of yeast cells is counted in each square of a grid

of 400. It was rare to get even as many as four cells in a square, and for this sample there were never more than

six. The observed frequencies are given in Fig. 27.

Fig. 27 Distribution (Poisson) of yeast cells.



Calculations

The total number of yeast cells for this sample is 529, and the mean or average per square is 529/400 = 1.3225.

If this estimate is substituted for the true mean, the formula becomes

For example, the estimated probability for three cells computed from the formula is

The expected frequency with 400 squares is 400(0.1027) = 41.09. The observed frequency of squares with

three cells is 42. The Poisson distribution does a good job of describing the distribution in this sample.

We will see this distribution again when we explore transformations later in the course to make data more

closely follow a normal distribution.

Equation 9

Equation 10



Binomial Distribution

Another discrete distribution even more common in agronomic data is the binomial distribution. This is used,

for example, in counting numbers of germinated seeds, seedlings which emerge, or diseased plants. In this

distribution, we measure for each experimental unit (plant or seed) one of two outcomes, for example,

germinated or not, or alive or dead. We assume a true proportion p of seeds which would germinate and that

each sample is of the same size, say n = 100 seeds. Each seed will germinate or not independently of any of the

other seeds. The distribution of the number of seeds germinating follows what is called the binomial

distribution.

Because of the importance of the binomial distribution, we will devote an entire unit to studying it.

Even though there are numerous examples of distributions other than the normal, it is such an important

distribution that we will concentrate in the next several units on analysis methods for normally distributed data.



Summary

Samples Represent the Population

• Sampling scheme or experiment design affect our ability to test hypotheses

• “Representative plants” generally have more bias than a random sample

Histogram

• Gives a “picture” of the population

Normal Distributions

• Bell shaped curve

• Characteristic of many types of data (yields, plant heights, errors in a measurement)

• Provides a mechanism to assign probabilities

Properties of Normal Distributions

• Bell-shaped curve

• Symmetric about the mean, μ

• 68% of values are within 1 σ and 95% are within 2 σ of mean

Z-scores

• Tell how many standard deviations above or below the mean

• De�ned as (Y – μ)/σ

• Allow computation of probabilities with the normal distribution

Non-normal Distributions

• Many examples (daily rainfall)

• Some may be transformed to be normal

https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/how-sample-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/how-sample-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/purpose-histograms-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/purpose-histograms-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-2-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-2-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/interpretation-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/interpretation-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-3-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-3-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-4-0
https://drupal.agron.iastate.edu/pbea/course-materials/quantitative-methods/distributions-and-probability/study-question-4-0


Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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