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Introduction

Determining the relationship between two continuous variables can help us to understand a response to an

associated action. The concept of linear correlation can illustrate a possible relationship between two

variables. For instance, the ideas that more rainfall and more fertilizer available to a crop produce greater yield

are very plausible. To determine whether a relationship exists statistically employs the use of linear models.

Once a relationship is established, methods of linear regression can be used to quantify the amount of

response and strength of the relationship, such as �nding that 5 cm of additional precipitation produces a 30 kg

ha-1 yield increase or applying 10 kg ha-1 less N reduces yields by 40 kg ha-1. For students of plant breeding, the

concepts of regression and prediction will be fundamental to understanding Quantitative Genetics and Breeding

Values.

Objectives

• The proper use of and differences between correlation and regression

• How to estimate a correlation relationship from a scatter plot

• How to establish a linear relationship between a dependent variable and an independent variable using

regression methods



Correlation

Correlation Coefficient

Correlation is a measure of the strength and direction of linear relationship.

The Pearson Correlation Coe�cient (r), or

correlation coe�cient for short, is a measure of the

degree of linear relationship between two variables.

The measure determines how close to linear is the

change in one variable with respect to the other.

The emphasis is on the degree to which they vary

linearly. Later in this lesson we will discuss

regression where the interest is in rate of change,

how one variable is predicted by the other. In

correlation the strength of the relationship is of

interest.

The correlation coe�cient may take any value

between 1 and –1.

The sign of the correlation coe�cient (+ , –) de�nes

the direction of the relationship, either positive or

negative. A positive relationship means that a

positive change in one variable is related to a

corresponding positive change in the other (e.g. more fertilizer produces more yield), while a negative

relationship produces a negative result (e.g. increasing numbers of black cutworms decreases yields).

The absolute value of the correlation coe�cient describes the strength of the relationship. A correlation

coe�cient of 0.50 indicates a stronger degree of linear relationship than one of r = 0.40. Likewise a correlation

coe�cient of r = –0.50 indicates a greater degree of relationship than one of r = –0.40. Thus a correlation

coe�cient of r = 0.0 indicates the absence of a linear relationship; correlation coe�cients of r = +1.0 and r =

–1.0 indicate perfect linear relationships.

Fig. 1 Example scatter plots and the r-values associated with

them.



Scatter Plots

A straightforward and necessary way to visualize correlations is through the use of scatter plots. Usually, the

dependent variable is plotted on the vertical axis of the plot while the other variable is plotted on the horizontal

axis. Such a plot can provide evidence of a linear relationship between the variables. An example is shown

below in Fig. 2.

Try the correlation exercise in the next screen!

Fig. 2 Fiber content plotted as compared to the date of harvest. The �ber content seems to increase linearly as the date of

harvest increases.



Try This: Correlation

How well related are these two measurements? What is their correlation coe�cient?

Applet: Try estimating some correlations here using randomly generated data sets.



Study Question 1

A paper in Science found a correlation of 0.9 between the length of the sunspot cycle and global
temperature change. What can we interpret from that data?

The length of the sunspot cycle is changing global temperatures.

We can't say anything conclusive because we don't know the physical relationship between the two.

There is no relationship between sunspots and global temperatures.

We are not sure if the results are signi�cant.

 Check



Correlation: Calculating r

Correlation is an often misused concept and statistic. When two things are correlated, what does that really

mean? Misconceptions about correlations between variables are common. Correlations can also be totally

spurious. For example, a positive relationship between the number of sheep in the United States and the

number of golf courses does not mean that sheep numbers have increased because there are more golf

courses. Both variables are likely to be related to an underlying trend of increasing population in the U.S. Many

things can be correlated, but it is the physical or biological relationship that gives a correlation relevance.

Correlation only states the degree of linear association (not cause and effect) between the two variables.

Calculation of r involves estimating the co-variance of two variables, or how much they vary together. The

correlation is de�ned in the equation below, where one of the variables is represented by x and the other by y.

where:

Sxy = sum of products = 

Sxx = sum of squares of x = 

Syy = sum of squares of y = 

The correlation equation may seem monstrous at �rst. Do not panic! Actually, the concept behind the equation

is closely related to the z-scores we calculated earlier.

The numerator, the sum of squares of xy (Sxy) measures the combined distances of all points from the center

of the plot . The more closely X and Y are related, the greater this value will be.

The denominator is the product of the square roots of the sums of squares of X and Y. The product of these two

roots quanti�es how much X and Y vary independently of each other.

Equation 1



Thus, r is the ratio of the amount that X and Y vary together to the amount X and Y vary total. The more X and Y

vary together, the greater the ratio will be. The maximum possible values (1 or -1) occur when all variation in X

and Y is related.

How individual variables vary is of interest. If large Y's are associated with large X's, it would stand to reason

that there would be a positive correlation between the variables.



Correlation Example

Some measurements were taken on the amount of �ow, Y (m3/s), in a normally dry drainage ditch, next to a

�eld. These were measured from run-off after 30 minute rainfalls. The total rainfalls were designated as X and

measured in millimeters (mm). Hydrologists wanted to know how much water ran off under different conditions

and how closely the two measurements were related in this �eld. The relevant sums are included along with the

computational form of the r calculation.

Table 1

x x2 y y2 sy

2.6 6.76 0.1 0.01 0.26

12.2 148.84 1.3 1.69 15.86

14.1 198.81 2.5 6.25 35.25

14.6 213.04 3.5 12.25 51.1

15.2 231.04 9.1 82.81 138.32

15.6 243.36 9.3 86.49 145.08

15.9 252.81 12.2 148.84 193.98

17.4 302.76 13.2 174.24 229.68

18.8 353.44 15.9 252.81 298.92

19.0 361.0 19.3 372.49 366.7

Σx 145.4 Σx22311.98 Σy 86.4 Σy21137.88 Σxy 1475.15



Fig. 3 Runoff from a �eld as a function of rainfall.



Correlation Example Calculations

where:

Sxy = sum of squares of product = 

Sxx = sum of squares of x = 

Syy = sum of squares of y = 

The computed r value is 0.79. This is a moderately large correlation. How large the correlation is depends upon

the variability of the data. Correlations can range well above 0.9 or below -0.9 in many cases. Physically, there

would seem to be a cause and effect here. Heavier rainfall would produce more run-off, while light rainfall

produces little or none. The best indicator of that can be seen at the heaviest rainfall rates, where magnitude of

the run-off increases substantially. The one data point at lower rainfall levels is problematic. We assume it is

real. Occasionally, a single outlier data point can slightly skew a relationship. Although not as linearly related to

the other data, it does �t the plausible model: lighter rainfall, less run-off.

Equation 1

Table 2

X X2 Y Y2 XY

2.6 6.76 0.1 0.01 0.26

12.2 148.84 1.3 1.69 15.86

14.1 198.81 2.5 6.25 35.25

14.6 213.04 3.5 12.25 51.1



Try the Correlation Exercise in the Next Screens!

X X2 Y Y2 XY

15.2 231.04 9.1 82.81 138.32

15.6 243.36 9.3 86.49 145.08

15.9 252.81 12.2 148.84 193.98

17.4 302.76 13.2 174.24 229.68

18.8 353.44 15.9 252.81 298.92

19.0 361.0 19.3 372.49 366.7

145.4 2311.98 86.4 1137.88 1475.15

Σx Σx2 Σy Σy2 Σxy



Ex. 1: Correlation Exercise (1)

Exercise 1: Calculating the Correlation in a Bivariate Set of Data

As shown in the examples displayed in the text, a good �rst guess in establishing a relationship between

variables is to view the data on an X-Y scatter plot. Trends should start to appear. We will produce a scatterplot

in Excel and determine the correlation.

• Open the QM-mod7-ex1data.xls workbook. It is July weather data with average temperature and

precipitation data.

• We will begin by producing a scatter plot to view the data. For this analysis, the Temperature will be

assigned to the x-axis and Precipitation to the y-axis.

Fig. 4

https://pbea.agron.iastate.edu/files/qm-mod7-ex1dataxls
https://pbea.agron.iastate.edu/files/qm-mod7-ex1dataxls


Ex. 1: Bivariate Set of Data

We will begin by producing a scatter plot to view the data. For this analysis, the Temperature will be assigned to

the x-axis and Precipitation to the y-axis.

Fig. 5



Ex. 1: Bivariate Set of Data (2)

Highlight the two columns with the precipitation and temperature data.

Select the Insert tab and click the Scatter Plot tool. Select the �rst type.

Fig. 6

Fig. 7



Ex. 1: Bivariate Set of Data (3)

Change the x-axis label to Temperature, the y-axis label to Precipitation, and the plot title to Precipitation vs.

Temperature. Click on each text box in the plot to change it.

Fig. 8



Ex. 1: Bivariate Set of Data (4)

The correlation between precipitation and correlation can be easily calculated. Label a fourth column

“Correlation” and enter the formula "=Correl(B2:B48, C2:C48)".

Fig. 9



Ex. 1: Bivariate Set of Data (5)

The correlation is moderately large (but not exceptionally high), with an r value of -0.534. You may see the

effects of an outlier here. The correlation between July temperatures and precipitation makes sense. This

relationship follows a meteorological pattern.

More precipitation wets the soil surface, causing

more latent heating and less warming of the air by

sensible heating. More precipitation generally

means more clouds. Both are associated with lower

temperatures. The single data value at the top may

skew your view of the correlation while having a

rather small effect on the total correlation. There

does seem to be a qualitative relationship without a

very strong correlation. Fig. 10 Rain falls on crop �elds. Photo

by Malene, Wikimedia Commons.



Ex. 1: Bivariate Set of Data (6)

Hold the cursor over the possible outlier in the Excel scatterplot.

Select the row with 1993 data in the original data and delete it.

Fig. 11

Fig. 12



The plot and correlation will change. However, be careful when discarding what appears to be an outlier. It is a

good idea to try and determine if there was an obvious experimental error that can be found. If there is not, it

may not be a true outlier.

Fig. 13



Discussion: Correlation

How much did the correlation change by removing the 1993 data? What do you think about the results of this?



Linear Regression

Definition

Linear Regression establishes a predictive relationship between two variables.

While correlation attempts to establish a linear relationship between two variables, regression techniques try to

determine a predictive relationship between the two. Translated, "Can values of one variable be used to predict

values of the other?"

When someone wishes to apply fertilizer, the expected amount of yield gained for the amount of fertilizer

applied is needed. Sound economic and ecological choices may be based on regression and relationships

between variables. Understanding the regression relationship allows the producer to use the amount of fertilizer

that can give the best yield or �nancial return for the money invested.

Several other physical variables obviously are involved in translating the fertilizer into a yield result, such as

rainfall, soil fertility, pest populations, etc.

Fig. 14 Fertilizer application on a �eld. Photo by Iowa State University.



Regression Lines

Referring to the scatter plot diagrams in the web exercise, one can estimate the magnitude of a correlation.

When establishing a regression relationship, a single line delineating the relationship is necessary. One could

use several methods to estimate the linear relationship that best �ts the data.

Connecting the two end points in the data or eye balling a resultant line are two examples. These will usually

provide a qualitative result that lacks precision and accuracy.

In the applet, we drew a line of "best �t" by eye, and observed the least squares regression line was different.

The regression line is that line which minimizes the sum of squared vertical distances of points on the line. If

you mentally determined the line minimizing the perpendicular distances, it would not be the same as the least-

squares regression line. The regression line is "best" in the sense of least error for the line with �xed x-values.

Applet: Try estimating some correlations here using randomly generated data sets.



Sources of Variation

Estimating Regression Line

The preferred method to estimate a regression line is to use the data to numerically calculate the line which

minimizes the error or the scatter of the points around the line. This is done using the least-squares method.

The result of a linear regression is an equation of

the form ( ). The hats over Y, α, and β

indicate these are estimates, not the actual

regression line. This equation determines the

relationship between the x and a predicted  based

on the estimated slope of the regression line and

the vertical intercept .

As we have discussed before, we do not know the

actual relationship between the two variables.

Therefore, we estimate it, based on gathered data. We assume there is a true regression line: y = α + βx + ε, and

we estimate intercept with α and slope with .

Fig. 16 Regression line statistics.



Point-Slope Formula

The point-slope formula to create the line can be found using sums of squares as calculated in the previous

section. The slope of the line is determined using this equation.

where: 

Sxy = sum of products = 

Sxx = sum of squares of x = 

Note the similarities to and distinct differences from the calculation of r. There are an in�nite number of lines

which can be described with this slope, thus another piece of information to describe a line is necessary.

Equation 2



Y-Intercept Formula

A speci�c point on the line (usually the vertical-intercept) along with the slope �xes a single line to the data.

The Y-intercept of the line is determined by the equation below.

Another point which the line intercepts is the point ( ). Knowing a point on the line and its slope completely

describes the regression line through the data.

Equation 3



Example Calculation: Slope

Using the data from the previous section, we can calculate the regression slope using a hand computational

formula in Equation 2.

Sxy (sum of squares of product) = 

Sxx (sum of squares of x) = 

The Y-intercept of the data can be calculated similarly.

Equation 2



Example Calculation: Interpretation

This line indicates that according to the measured data, the run-off will increase by 1.11 m3/s for each

additional mm of rainfall. The line created is the "best" in describing the linear response of run-off to the

associated rainfalls (Fig. 17).

The strength of the relationship is r2, i.e., the

correlation coe�cient squared. Note that the line

�tted to the data intercepts the vertical axis at a

negative value. An initial interpretation of “negative

runoff” is clearly nonsense, but a little re�ection on

the nature of the problem suggests that up to a

certain level of rainfall the water will in�ltrate the

soil before there is runoff. Thus the negative value

can be interpreted as the “in�ltration potential” of

the soil. You may also notice that there is some

bias in the way the data deviate from the regression

line. The line overestimates the run-off for rainfalls

from 10-15 mm and underestimates above 16 mm.

This hints that a linear relationship may not be the best choice for this relationship.

Try: Estimating Regression in the Next Screen!

Fig. 17 The best �t line for the rainfall runoff data. The

equation of the line, and r2 value of the data are included.



Ex. 2: Estimate Regression (1)

Exercise 2: Plotting Data to Estimate Regression

We will now use data to calculate a regression line.

We could have calculated a regression line for the

previous data, but since it is not obvious which is

the cause and which the effect for July

temperatures and precipitation, using one to predict

the other is somewhat questionable.

Here we will use the relationship between water

stress and corn yield reduction in Iowa.

Water is the independent variable with yield being

the dependent (or predicted) variable. In this case,

the researcher controlled the amount of water

applied and measured the yield.

Fig. 18 Predictive analysis of corn yields are key to farm

economies. Photo by Iowa State University.



Ex. 2: Plotting Data

Download and open the Excel �le QM-mod7-ex2data.xls. Select the “Water stress” worksheet.

Fig. 19

https://pbea.agron.iastate.edu/files/qm-mod7-ex2dataxls
https://pbea.agron.iastate.edu/files/qm-mod7-ex2dataxls


Ex. 2: Plotting Data (2)

Select the Data tab and click on the Data Analysis tool.

Scroll down to Regression; highlight it and click OK.

Fig. 20

Fig. 21



Ex. 2: Plotting Data (3)

Fill in the options as shown:

Fig. 22



Ex. 2: Plotting Data (4)

This gives the Linear Fit for the least squares regression line and an ANOVA for Regression. It also gives the

residual plot.

Notice that the prediction equation is : E(Yield (in 1000 kg/ha)) = 9.78 – 0.117 (Water Stress). This can be

determined from the coe�cients for Intercept and X Variable 1. The regression equation is Y = 9.78 –

0.117(WS) + error.

Fig. 23

Fig. 24





Ex. 2: Plotting Data (5)

Save this analysis for Exercise 3.

Fig. 25



Estimation Formula

Sources of Variation include the line and deviation from the line.

The line produced in linear regression is calculated to minimize the average distance of the Y-values from the

line. Thus, summing the deviations of the actual Y-values from the regression-predicted values will equal 0.

Measurement of observed data always has some variability associated with it due to the nature of error in

experimental data. This variability can be accounted for and partitioned into its sources with an Analysis of

Variance (ANOVA). Some variability of the Y's occurs because of their relationship with X. This is quanti�ed by

the squared correlation coe�cient (r)2, the proportion of variance in Y that can be accounted for by linear

association with X. The rest of the variability around the line cannot be accounted for (at least in its relationship

with the X variable). This is attributed to error. The linear model that accounts for this is depicted in this

equation.

where:

 = estimated Y intercept

 = estimated slope

 = deviation of Y value from line (error)

Equation 4



Errors

The true error is assumed to be in the measurement of the Y values only. It is assumed that the X’s are �xed or

that their measurement error is very small. The situation where the X’s have error is termed a bivariate normal

distribution, in which case the assumptions for regression are not valid. We saw the effect of measurement

errors in the X-variable in an earlier “Try This”. Some other assumptions are necessary for regression:

• for any value of X there is a normal

distribution of errors

• the variances must be the same for all Y

values

• the Y-values are randomly obtained and

independent of each other

• the mean of the Y-values at a given X is on

the regression line

Notice that these assumptions — independence of Y-value, normal distribution, constant variance, and

adequacy of the model — will be essential throughout the remainder of the course.

Fig. 26 Scatter plots and histograms are visual

representations of variation in data sets.



Sum of Squares

It can be shown that the total sum of squares for Y is the sum of that associated with the regression line and

that from the errors, or sum of squares not related to the relationship with X.

The correlation coe�cient squared, r2, from the previous section describes the amount of variation attributable

to the regression equation below. For example, if r2 = 0.75, then 75% of the total variation in Y is accounted for

by the linear regression.

The total Sums of Squared (SS) deviations in the response variable (Y) is given by

This represents the total variability about the average response variable and is used extensively throughout this

and future units.

Equation 5



Regression and Total SS

Because we have to estimate one parameter (the average response) in the the total SS, we need to recognize

that there are n-1 degrees of freedom (df) associated with this calculation.

where: 

Syy = sum of squares of y = 

or

Syy = each observation = 

Equation 6



Partitioning Variation

The total sum of square deviations can be partitioned into regression and residual sums of squares based on

these formulae.

This captures the essential relationship between the correlation coe�cient, the variance of the Y values, and the

partition of variation into that associated with the model (Regression SS) and that which is unexplained

(residual). As the residual becomes large relative to the total variance, the correlation coe�cient becomes

smaller. Thus, the correlation coe�cient is a function of both the residual and the total variance of Y.

Equation 7



Statistical Significance

F-tests

Statistical Signi�cance of the regression relationship can be tested with an F-test

The calculated regression slope is based on gathered data, from a sample. Calculations based on these data

estimate the actual regression relationship. Even though we have calculated a regression coe�cient, it is

merely an estimate of how the variables are related. The true relationship may be slightly different from the one

calculated. This could result in stating that there is a relationship when none exists. Testing the signi�cance of

the slope of the regression is done in a manner similar to other types of hypothesis testing.

The null and alternative hypotheses for this test:

Equation 8



Formula for F

The test is used to determine if the slope of the regression line is different from 0. Two related statistical tests

may be used to test this hypothesis. The �rst, shown below, uses the sums of squares to determine if the

regression coe�cient captures enough of the variance in the data using the F test.

If the slope explains a signi�cant proportion of the variability in the regression, then the slope is considered

different from 0. If not enough variation is explained at some level of signi�cance, often 0.05, then the slope

cannot be considered different from 0.

Equation 9



ANOVA Table

As discussed, the variability can be partitioned. The linear regression sum of squares is calculated as shown in

the Analysis of Variance (ANOVA) table or using the equation from the previous section. The ANOVA table for

linear regression is shown in Table 3.

Notice the sums of squares and degrees of freedom for regression. The regression SS is written as a formula

involving a ratio. This equates to the proportion R2 of the Total SS of Y (Equation 6). The regression relationship

has 1 df, because the test is for the slope being zero. In an ANOVA, mean squares are SS divided by df.

Table 3 The ANOVA table for linear regression.

Source of Variaton Sum of Squares Df Mean Square F

Regression 1  

Residuals n -2  



Example: ANOVA

Let's test the regression calculated from the previous data set. Calculating the sum of squares for Y gives a

value of 391.3. Knowing the r2 value of 0.62, we can �ll in the following ANOVA table:

The F-test is used to compare the equality of variances. In this case, we are testing whether the variance

associated with the estimated slope, , is greater than the residual variance.

A calculated F value greater than the critical F value indicates the slope is signi�cantly different from zero.

Alternatively, most statistical software will calculate the probability of a given F value.

Table 4

Source of Variation Sum of Squares Df Mean Square F P < F

Regression 242.1 1 242.1 12.95 0.007

Residuals 149.2 8 18.7    



Ex. 3: Calculating a Regression Line and Testing the Slope (1)

In this exercise we will use Excel to �nd the regression equation. Calculations from the raw data are possible,

but equations can be calculated easily using statistical software.

Return to the water stress computer output from the last exercise or re-run that analysis.

Fig. 27



Ex. 3: Calculating a Regression Line and Testing the Slope (2)

A great deal of information is available from the Summary Output and Analysis of Variance.

1. R (correlation between yield and water stress)

2. R-Squared (R2)

3. Adjusted R Square

1-(Residual MS/Total MS)

A better measure for "goodness of �t" in multiple regression and comparing regression lines with

different numbers of replication than is R-squared.

4. Standard Error (square root of the residual mean square)

Again notice the regression equation (Linear Fit). E(Y) = 9.78 - 0.117x Is the slope statistically signi�cantly

different from zero?

The ANOVA table, which has the F-test for slope based on the residual mean square (0.632), supplies the

answer.

The Prob > F, which tests the null hypothesis of no linear regression relationship (i.e., slope =0), implies to reject

H0 because the probability is < .0001.

There is another test for the signi�cance of water stress, as a t-ratio for water stress in the table beneath the

ANOVA.



The regression slope, estimated by -0.117, is signi�cantly different from zero.



Ex. 3: Calculating a Regression Line and Testing the Slope (2)

We can get some information on how well the line �ts the data by examining the Residual plot.

The sum of the residuals should be 0 (or very small due to rounding errors of the computer and software). The

plot of residuals displays how the actual Y values deviate from the regression-predicted Y values at each X.

These should be scattered randomly along the X-axis. If there is any regularity to the residuals, the data may not

be �t well by linear regression, or one of the assumptions of linear regression may have been violated. This is a

small data set, so it would be easy to think that there is a pattern there. However, given the small size of the

sample it does appear to be approximately randomly distributed around zero.

Fig. 28



Study Question 2

Does the slope of the regression line in the rainfall and runoff study (Table 3) differ from 0?

No

Yes

 Check



Confidence Limits

Purpose

Con�dence limits can be established for the regression slope.

When you have calculated a regression line and

tested the slope for signi�cance, you can be

reasonably assured that the sampled regression

line approximates the slope, b, of the model.

Testing whether the slope describes a signi�cant

amount of the total variability is based on the

F-test. From table 29 we note that the calculated F

value of 12.95 is a really large value relative to an F

distribution where the slope is equal to zero.

Indeed, the probability of getting such a value or

larger (P>F), given the null hypothesis, is 0.007.

Thus the data do not support the null hypothesis of

no linear response, although we might be wrong

with such a statement about 7 times out of a

thousand.

Another test related to the F-test is the t-test. The

t-test can be used to test the signi�cance of the

regression line or more commonly it can be used to

set error limits of the regression line. Typically,

these are displayed as error bars encompassing

some percentage of the data based on the

estimated variance, s2. These limits come in three

different types, error bars describing a con�dence

interval where the regression line occurs, error bars

around the estimate of the average response, and bars encompassing an individual predicted value for a given

X.

Fig. 29 Display methods for con�dence limits on the

regression line of a set of data and the predictions made

from it.



Equation

Con�dence limits are the lower and upper bounds of a con�dence interval. In the context of regression line they

can be used to test whether the slope of the regression line is different from 0. The null hypothesis is that the

slope of the regression line is 0. The alternative hypothesis is that the slope of the line is not zero. If the

con�dence interval includes 0, the slope cannot be considered different from 0 at that level of signi�cance. The

error is merely that associated with the regression line. Con�dence limits on a regression line are similar to

those calculated for sample means.

where:

 = slope estimate

t = t - value for the given degrees of freedom and signifance level

SE = standard error of   

Equation 10



Using t-Test

Restructuring this equation to solve for t allows us to use a t-test for testing whether the slope is different from

0. That test is equivalent to the F-test of regression in the ANOVA. The con�dence limits bracket possible

slopes of the regression line. A 95% con�dence interval for the slope of a regression line means that this

procedure will bracket the true regression slope 95% of the time.

Limits on the estimates of a speci�c Y from the equation, correspondingly, will have a wider limit. The estimate

of the mean Y or predicted values include not only the variance of the regression line but also that of individual

means or values at each X-value.

Try: Con�dence Lmits in the next screens

Equation 10

Fig. 30 When the standard error is large or the estimated slope of the regression line is small, a distribution will fail the

t-test because a slope of 0 is possible under the given con�dence level.



Ex. 4: Confidence Limits

Open the Excel water stress workbook you used earlier.

Directly underneath the ANOVA table is a table with t-ratios and con�dence intervals for the intercept and Water

Stress coe�cients.

A 95% con�dence interval for  is between -0.133 and -0.100.

This is also easily computed from the formula , or -0.117±(2.045)(0.0081), where with alpha = 0.05

in two tails and 29 error df, the table t-value is 2.045 and the standard error for b is 0.008096.

Use a calculator to show that the con�dence limits for  match those in the table.

Fig. 28



Replicated Regression

Purpose

Regression in replicated data allows a goodness-of-�t test.

Agronomic experiments are usually replicated. In this situation, when the data are grouped, replication of Y

values at X's will occur. Calculating a total regression includes the variability in Y replication at the X values.

Because of the replication at each X, we are able to

separate the residual variation into two parts, that

due to lack of �t of y-means from the regression

line and a pure error. One of the assumptions of

regression is that the regression line passes

through the mean Y at each particular X-value.

There may be some difference between the

regression-predicted mean and the actual mean,

called the lack of �t of the regression line. We wish

to partition that error from the pure error in the

data. The lack of �t SS is due to deviations from

linearity.

The mean Y at each X could be used to create a regression line, but some information (on pure error) would be

lost in the process.

Fig. 31 This data on �ber content in corn kernels related to

harvest date shows replication: some samples harvested on

the same date have different �ber contents.



Example

An example compares the regression of percent of �ber content of corn by harvest date. Here you may have

several data points for each date.

The initial ANOVA table provides the sum of

squares and the test for the signi�cance of the

regression line. After the 1 df for regression 21 df

remain. This variability can be partitioned into the

two sources discussed, the lack of �t to the model

and the pure error. The lack of �t variability comes

from the difference between the actual means of

the Y's at each X and the regression line predicted Y

at each X. This value describes how much error is

associated with the regression line. This value can

be tested to determine if the regression lack of �t is

different from 0. Error which is left over is termed

the pure error.

Fig. 32 Scatter plot showing �ber content of corn by harvest

date

Table 5

Source SS Df MS F P <

F

Regression 6.32 1 6.32 6.26 <.05

Residual 21.19 21 1.01    



Error Calculation

Pure error is the deviation sum of squares of each individual Y from the mean Y at each X. The degrees of

freedom are the sum of one less than the number of replicated Y's at each X. The pure error is calculated and

subtracted from the residual to �nd the lack of �t.

where:

i = level of X

j = each replicated Y at a given X

Yij = each observation at a given level of the x (independent variable)

Yi = mean for each level of the x variable

In effect, you are calculating a new sum of squares that estimates the total variance of observations around the

mean for each value of x. This tells us how scattered were the data points we tried to �t with the regression

line. The pure error degrees of freedom are calculated as:

Equation 11

Equation 12



Example: ANOVA Table

These equations produce the ANOVA table (Table 6).

The second F test compares the MS-lack of �t to the MS-pure error. This tests the linearity of the regression

line. Since it is not signi�cant, we assume the regression is linear and we do not have to try another model.

Table 6 Output from ANOVA of data

Source SS Df MS F P < F

Regression 6.32 1 6.32 6.26 < .05

Regression 21.19 21 1.01    

Lack

of �t

8.78 11 0.79 0.64  

Pure

error

12.41 10 1.24    



Ex. 5: ANOVA with Replicated Data

In this exercise we will calculate the ANOVA presented in the lesson for replicated measurements of �ber

content over different harvest dates. This will require calculating the ANOVA and partitioning the degrees of

freedom and sums of squares.

• Download the QM-mod7-ex5data.xls �le and save it.

• Run the regression analysis covered in Exercise 2 on this data set, then go back to the worksheet with the

original data set.

• The lack of �t test is not calculated automatically in the regression analysis, so we will have to do it step-

by-step.

On the same page as the data set, add two columns. Label one Date and the other Mean at Date.

Fig. 33

https://pbea.agron.iastate.edu/files/qm-mod7-ex5dataxls
https://pbea.agron.iastate.edu/files/qm-mod7-ex5dataxls


Ex. 5: ANOVA with Replicated Data (2)

Under date, copy each of the dates once.

Under Mean at Date, calculate the average of the observations at the given date.

Fig. 34

Fig. 35



Ex. 5: ANOVA with Replicated Data (3)

Now we will �nd the residuals associated with pure error using the means that were calculated.

1. Insert a new column next to the Fiber Content data.

2. Place the average for each date next to the associated date. Use this formula: =LOOKUP(A2,E$2:E$14,

F$2:F$14)

3. Add another new column for the residuals.

4. The residuals can then be determined by subtracting the mean at each date from the observation at that

date. =B2-C2

5. Add another column and insert the sums of squares (SS) associated with pure error by squaring each of

the residuals. =POWER(D2,2)

6. Add another column and insert the sums of squares (SS) associated with pure error by squaring each of

the residuals. =POWER(D2,2)

7. Then sum all the squares of residual pure error. =SUM(E2:E24)

8. The degrees of freedom for pure error are calculated by determining the number of observations at each

date and subtracting one from the number of replications at each date. =IF(COUNTIF(A$2:INDIRECT("A"&

ROW()),A2)>1, "", COUNTIF(A$2:A24,A2)-1)

9. These values are then summed. =SUM(F2:F24)

10. The mean squares for pure error are then calculated by dividing the pure error sums of squares by the

degrees of freedom for pure error.

11. The lack of �t sums of squares and degrees of freedom can be found by subtracting the pure error sums

of squares or degrees of freedom from the residual sums of squares.

12. The mean squares for lack of �t are found by dividing the lack of �t SS by the lack of �t DF.

13. Calculate the F-test for the lack of �t test by dividing the lack of �t MS by the pure error MS.

14. Finally, the p-value for the F-test can be found using the formula “=f.dist.rt(A,B,C)” where A is the

F-statistic, B is the df for lack of �t, and C is the pure error DF.

Fig. 36



Ex. 5: ANOVA with Replicated Data (4)

Fill in the values in the ANOVA table under the regression analysis.

Insert two rows for the “Lack of Fit” and “Pure Error” statistics.

Add the values you calculated to the ANOVA table under the regression analysis.

The completed analysis can be found in qm-mod6-ex5solved.xlsx.

Fig. 37

https://pbea.agron.iastate.edu/files/qm-mod7-ex5solvedxls
https://pbea.agron.iastate.edu/files/qm-mod7-ex5solvedxls


Summary

Correlation (r)

• Measures degree or strength of linear relationship

• Tells direction of linear relationship, positive implies x and y increase or decrease together; negative (y

decreases as x increases or vice versa)

• Ranges between -1 and +1, with 0 being no linear relationship

• Scatter plot is important to help interpret

Linear regression

• Establishes a mathematical relationship between two variables

• Prediction equation is Y = a + bx

• Parameter estimates are intercept (a) and slope (b)

• Line of best �t minimizes squares of vertical deviations from line

ANOVA for Regression

• Has sources of variation for regression with 1 df and error with (n – 2) df

• r2 = (square of correlation) is proportion of variation attributed to linear regression

• Tests statistical signi�cance of linear regression

Con�dence Limits

• Can be established for regression slope

• CL = b ± tsb

• Can also be computed for mean of y-values or individual y given x.

Regression with Replicated Data

• Allows a goodness-of-�t test of the model

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/correlation-2
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/correlation-2
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/correlation-2
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/correlation-2
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/definition
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/definition
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/definition
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/definition
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/anova-table
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/anova-table
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/anova-table
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose-0
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose-0
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose-0
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose




Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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