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Introduction

Marker-assisted selection (MAS) was applied as early as the 1980s when Tanksley and Rick (1980) used

isozymes as markers for introgression of an exotic trait into adapted tomato cultivars. The premise behind use

of markers is that selection on genotype rather than phenotype may increase speed and e�ciency of selection.

As you learned in the previous lesson, marker-assisted backcrossing (MABC) involves the use of markers to

help recover the genome of the donor parent during a backcrossing program. In contrast, marker-assisted

selection (MAS) aims to develop improved novel genotypes that are likely quite different from parental

genotypes, based on markers that represent quantitative trait loci (QTL) alone (marker-based selection, MBS),

or in combination with phenotypic selection, which was the original de�nition of marker-assisted selection

(MAS) by Lande and Thompson (1990). MAS is sometimes used as summary term for application of markers in

connection with selection procedures.

MAS and MBS are used to generate new lines or populations, whereas MABC is used to improve existing lines

by adding one or few genes. During MAS and MBS, a breeder intermates combinations of complementary elite

lines to identify transgressive segregants for multiple genes/alleles. Marker information is usually based on

preceding QTL mapping experiments. This can be critical, if QTL/marker information is based on different

genotypes in the mapping experiment compared to the breeding program. As different combinations of QTL

segregate in different populations, the transferability of information across populations is limited. Markers

would ideally be diagnostic for the presence of bene�cial QTL alleles and thus valid across numerous crosses.

MAS has been shown to be more e�cient than conventional phenotypic selection for traits with low heritability,

and some of the MAS strategies have been successfully implemented in breeding programs of Monsanto® and

other companies for different species. The following sections will discuss MAS strategies, e�ciency, and

factors that in�uence MAS and alternative approaches to MAS that can be applied in a breeding program.



Objectives

• Understand difference between marker-assisted backcrossing (MABC) and marker-assisted selection

(MAS).

• Develop an awareness of the relative e�ciency of MAS versus phenotypic selection.

• Understand factors that in�uence e�ciency and limitations of MAS.

• Understand MAS strategies.

• Develop an awareness of the alternative approaches to MAS.

• Understand differences between Marker-Assisted Selection (MAS) and GS

• Understand principles of Genomic Selection (GS).



Limitations in QTL Mapping

QTL Dependicies

As discussed in the module on Cluster Analysis, Association & QTL Mapping, the goal of QTL mapping is to

identify one or more genomic region(s) called quantitative trait locus (QTL) controlling a particular trait.

However, the statistical power for detecting QTL depends on population size, leading to overestimation of QTL

effects in small populations (Beavis, 1994), the Beavis effect. For this reason, QTL studies depend on very large

sample sizes, and are only capable of detecting differences that are captured between the parents used to form

a mapping population. Thus, within a given population, if the same parents were used to map QTL and to

establish a breeding population, all QTL are of interest. Some QTL might not be relevant when they are

transferred to other populations (if there is no segregation for that QTL). Another issue is, QTL determined at

per se level might not be relevant for the testcross level in hybrid species like maize. Therefore, the way

phenotyping is done affects the detection and consistency of QTL.

For all strategies presented in this lesson, it is crucial to understand that the reason for limited success of MAS

(compared to GS) is their dependence on QTL mapping. QTL mapping has been shown to only �nd a fraction of

QTL affecting a quantitative trait, and to overestimate genetic effects for detected QTL. Thus, during MAS,

relevant regions in the genome are missed, whereas other regions likely get too much weight, so that expected

�ndings likely differ from actual ones, leading to limited gain in selection.

https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/cluster-analysis-association-qtl-mapping/introduction?cover=1
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https://pbea.agron.iastate.edu/beavis-effect-1
https://pbea.agron.iastate.edu/beavis-effect-1


Impact Graph

Fig. 1 Impact of population size (N) and trait heritability on power of QTL detection. Adapted from Utz and Melchinger,

1994.



MAS Strategies

MAS Strategies - F2 Enrichment

A. F2 Enrichment

The objective of the F2 enrichment strategy is to develop superior Recombinant Inbred Lines (RILs). MAS is

particularly useful for F2 individuals or F2-derived lines, or other early generations (DHs, BC1-

derived populations), because LD between marker loci and the trait of interest are at a maximum in a

segregating population.

The F2 enrichment procedure involves:

a. QTL identi�cation

b. Culling of undesirable genotypes to increase frequency of desirable alleles/genotypes

c. Identi�cation of RILs with all favorable QTL alleles �xed

where:

y = the expected phenotypic value of an indiviadual 

 = the model mean

 = additive effect of the marker.

 = random environmental factor

 = indicator variable (with values 1,0 and -1 for marker genotypes MM, mm and mm)

N  = the number of markers 



Obtaining Marker Scores

B. Use of Marker Scores in Selection

Theoretically, selection of individuals is most e�cient, when based on additive gene effects. QTL analysis

identi�es chromosome segments affecting traits of interest, and enables to estimate gene effects (additive,

dominance, and epistasis) for each QTL. If summarized across all detected QTL, the expected performance of

an individual can be predicted based on the QTL information. QTL analysis depends on the precise mapping of

each QTL along with marker-trait regression analysis to estimate genetic effects of QTL. Marker-trait regression

uses the following equation:

where:

y = the expected phenotypic value of an indiviadual 

 = the model mean

 = additive effect of the marker.

 = random environmental factor

 = indicator variable (with values 1,0 and -1 for marker genotypes MM, mm and mm)

N  = the number of markers 

Thus, markers (representing QTL) with signi�cant effects on the trait of interest can be used to obtain marker

scores (also referred to as molecular score) for each individual. The following expression is used to estimate

marker scores (MS):

where:

n  = the number of markers selected 

 = additive effect of the marker i



 = indicator variable with values 1, 0 and -1 for marker genotypes MM, Mm and mm)



Derivation of a Selection Index

C. Derivation of a Selection Index for MAS

Lande and Thompson (1990) demonstrated that MAS is most effective when breeding values are predicted by

an index of QTL genotypic values and phenotypic values. Index weights are estimated that maximize the

correlation between the index and a candidate’s breeding value (Atotal). Atotal is the sum of individual’s breeding

value for the marked QTL (AQTL) and the breeding value for all other genes (Arest), not explained by QTL. Thus,

Atotal = AQTL + Arest.

1. Estimating marker scores

A marker weight coe�cient (bMS) is estimated as follows: 

where:

MS = marker score

h2 = narrow sense heritability

 = proportion of genetic variance explained by a marker score

2.  Estimating index weight of marker score relative to phenotype 

An individual’s phenotype (P) is weighed using the following formula (Bernardo, 2009):

Thus, MS is weighted more heavily than P.

If h2 is 1, and θ ranges from 0.1 to 0.75, then the numerator of the marker weight coe�cient bMS will be close to

0, and thus, almost no weight will be assigned to markers. Thus, the higher the heritability of a trait, the lower

the marker score. On the other hand, if h2 is low, and if θ is if high (>0.5), more weight will be assigned to

markers.



Interpretation of the Marker Score

3. Interpretation of the marker score

Assume a candidate’s breeding value (Atotal) is the sum of its breeding value for the marked QTL (AQTL) and its

breeding value for all other genes (Arest), not explained by QTL:

Atotal = AQTL + Arest

Thus,

• The marker score gives an estimate of AQTL

• Phenotype can be used to estimate an individual’s total breeding value, Atotal

Therefore, possible selection strategies could be based on MS and phenotype as described by the following

steps:

• Select on marker score alone: this ignores the information that is provided by phenotype on all the other

genes that affect particular traits

• Independent culling level selection: that is, based on (a) selection on marker score, (b) selection on

phenotype. Some individuals with desirable genes for non-marked QTL may be eliminated in (a)

• Index selection: develop index of marker score and phenotype (I = bMS MS + bp P). In general, expected

response to selection index > independent culling > MS alone.



Marker-Assisted Recurrent Selection

D. Marker-Assisted Recurrent Selection

Marker-assisted recurrent selection (MARS) is used to enrich favorable alleles for QTL of interest over multiple

generations. Indirect selection during winter generations can be combined with phenotypic selection or

selection indices in rapid breeding cycles (Fig. 2).

MARS involves: 

a. QTL identi�cation, similar to F2 enrichment

b. Identi�cation of best individuals based on marker score (Table 1) within population.

c. Recombination of best individuals followed by identi�cation of best individuals as described in (b).

Fig. 2 A general scheme for marker-assisted selection in plant breeding. Adapted from Eathington et al., 2007.



MAS Strategies Comparison

Application of MARS:

https://www.agronomy.org/publications/cs/abstracts/47/3/1082

E. Similarities and Differences of MAS Strategies

F2 enrichment MARS

Involves QTL identi�cation Involves QTL identi�cation

QTL are given equal weights QTL are weighed according to the additive effect

Culling of undesirable genotypes Identi�cation of best individuals based on marker

scores

Identi�cation of RIL with favorable �xed

alleles 

Recombination of best individuals

https://www.agronomy.org/publications/cs/abstracts/47/3/1082
https://www.agronomy.org/publications/cs/abstracts/47/3/1082
https://www.agronomy.org/publications/cs/abstracts/47/3/1082


Efficiency of MAS

Selection Index

To understand, what determines e�ciency of MAS, we must understand how it is estimated. First, we estimate

the accuracy of selection based on the selection index theory.

The selection index (I) is used to account for the relative superiority or inferiority of individuals for all the traits

represented by the index.

where:

bi is the weight for trait i, and Xi is the phenotype value for trait i. The value of I is calculated for every individual

or family in a population.

The selection index can also be denoted as I = bMM + bpP.                     

where:

bM and bp are weights, M (or MS) is the marker score, and P is the phenotypic value.

The following equations can be used to estimate bP and bM:

where:

VA = additive genetic variance

VM = the additive variance explained by the marker



VP = phenotypic variance



Estimating Relative Efficiency of MAS

Assuming that the selection intensity and generation interval are similar, the relative e�ciency (RE) of MAS over

phenotypic selection is obtained by comparing response from MAS to response from phenotypic selection

(Bernardo, 2002).

1. RE of marker-based selection (REMBS:PS)

2. RE of marker-assisted selection (REMAS:PS)



Comparison to Phenotypic Selection

As Figure 3 and Table 1 show, MAS is more e�cient than phenotypic selection for traits with low heritability, but

MAS may not be economically justi�able for traits with higher heritability, and that are easier to score

phenotypically. The reason is that when heritability (h) is high, gain from phenotypic selection nears the

maximum possible given the genetic variance, leaving a small window for additional improvement by the use of

markers.

Fig. 3 E�ciency of marker-assisted and marker-based selection relative to phenotypic selection. VM = variance due to

marker score; VA = additive genetic variance; h = heritability. Adapted from Bernardo, 2002.



Factors Affecting Efficiency

Therefore, many factors affect the e�ciency of MAS, including the size of the QTL mapping population, the

phenotype to be scored, experimental design and analysis, the number of markers available, the degree of

association between available markers and the QTL, the proportion of additive effect described by the marker,

and the selection method. Also, the crop to be improved and the marker development pipeline have a bearing on

the e�ciency of MAS. While MAS may provide greater relative e�ciency than phenotypic selection, MAS

programs also require higher economic e�ciency to justify their application in a breeding program. As seen in

Table 2, MAS is less economical for traits such as seedling emergence. Such traits may be easier to score

visually and would thus not justify the use of MAS for their evaluation. On the other hand, biochemical traits

such as sucrose concentration justify the application of MAS because they are di�cult to score.

Table 1 Relative e�ciency of marker-based selection compared with phenotypic selection in maize. Data from Bernardo,

2002. 

Trait VM/VA h2 Relative E�ciency

Yield 0.51 0.63 1.09

Grain moisture 0.55 0.94 1.00

Stalk lodging 0.62 0.39 1.33

Root lodging 0.62 0.39 1.33

Plant height 0.58 0.89 1.01

Table 2 Estimates of the average evaluation costs (US $) for the selected traits using phenotypic selection (PS) and

marker-assisted (MAS). Data from Yousef and Juvik, 2001. 

C1  C2  C3

Trait PS MAS PS MAS PS MAS

Emergence 56 103 42 78 37 70

Sucrose 178 164 134 109 119 90

Tenderness 158 154 119 104 105 87

Hedonic rating 370 260 278 157 247 122

 Average costs of selecting and evaluating one family for each trait in the �rst cycle (C1) and in

subsequent cycles (C2 to C3).

 Estimated costs based on actual responses.



Projected costs based on costs associated with PS and MAS in the �rst cycle of selection. 



Examples of Application in Crop Breeding

Example 1

Example 1: Implementing MAS in Australian Wheat Breeding

The programs use DNA markers for selection for traits of high economic importance, which are controlled by

single genes, and di�cult to score reliably by non-marker assays (Eagles et al. 2001). In these programs,

markers are also used for introgression of multiple genes controlling single traits (Lessons 4 and 5). Table 3

lists DNA markers used in wheat breeding in Australia.

Resistance to cereal cyst nematode (CCN) and tolerance to boron toxicity are di�cult to phenotype. As shown

in Table 3, two QTL have been identi�ed for each of the two traits. The CCN markers are tightly linked to the

resistance genes, and derived from germplasm sources outside the Australian wheat gene pool. Thus, markers

for resistance to CCN have had greater success in stacking resistance in susceptible cultivars of wheat (Eagles

et al. 2001). In contrast, the boron tolerance genes are present within Australian gene pool. For this reason,

marker alleles for tolerance to boron are also observed in many susceptible lines in wheat breeding programs

(Eagles et al., 2001), limiting their success as diagnostic tools for boron tolerance.



Example 2

Example 2: Use of MAS in Breeding For Resistance to Soybean Cyst
Nemotode

Soybean cyst nematodes (SCN) cause major economically important yield losses. The North American soybean

germplasm pool lacks genes for resistance to SCN. The source of resistance to SCN is the center of soybean

diversity in Asia. Resistance to SCN is controlled by one major gene, rhg1 and additional minor alleles (Cregan

et al. 1999). Resistance to SCN is di�cult to score reliably, warranting the use of MAS in selection for the trait.

Novel marker alleles linked to SCN resistance genes have strong linkage disequilibrium to resistance genes.

Also, the markers are reproducible consistently across multiple breeding populations. Since resistant progeny

lines developed from resistant parents will also have the same marker alleles as their resistant parents, the

markers can be used as diagnostic tools for resistance to SCN. Therefore, the markers will be useful in most

future populations made by crossing resistant lines to susceptible lines.

The two examples underscore the importance of identifying markers that are tightly linked to target genes. Such

markers are ideally developed from causal gene sequence to ensure that they are speci�c to the resistance

allele, for example, the Cre genes for SCN resistance (Table 4). Marker alleles from different gene pools have a

higher chance to be distinct and thus, diagnostic.



Example 3

Example 3: Use of MAS In Introgression of Yield QTL Alleles in
Soybean

Reyna and Sneller (2001) observed insigni�cant marker effects for yield QTL when a superior northern soybean

cultivar was tested in southern environments. Therefore, MAS may not be useful in transferring superior genetic

value of a cultivar to populations of environments in which the superior cultivar is not adapted. Such negative

results from MAS are not always reported, resulting in publication bias for research that generates positive

value of MAS in cultivar development.



Reasons for Varying Successes of MAS

In the case of polygenic traits such as yield MAS has produced mixed results. The reasons for less success of

MAS in selection of polygenic traits include:

• Accurate estimation of location and effects of underlying QTL is di�cult.

• Different QTL may be important in different populations.

• Phenotypic selection is already e�cient for moderate to high heritability traits, making MAS less

economical.

• QTL mapping methods require integration into e�cient breeding procedures.

The above limitations to the success of MAS contribute to the “catch-22 of MAS” which means that if

phenotypic data are poor indicators of genotypes, QTLs cannot be adequately mapped to implement MAS. On

the other hand, if phenotypic data are good, MAS is not needed.

The Catch-22 of MAS can be avoided if a small number of QTL explain most of the genetic variation. In that

case, high heritability in the QTL mapping phase is optimal to identify QTL markers. Then, markers can be

implemented more economically than phenotyping in future selection cycles. Nonetheless, yield variation is not

likely to be explained by few QTL, because underlying QTL will vary across populations.



Alternative Approaches to MAS

Mapping As You Go (MAYG)

A. Mapping As You Go (MAYG)

The MAYG strategy re-estimates the value of QTL alleles as new germplasm is developed over breeding cycles

(Podlich et al., 2004). In general, MAYG involves the following steps: 

1. Estimation of QTL effects in progeny of an initial set of crosses.

2. Construction of marker alleles based on information from step 1 for MAS on germplasm.

3. Creation of new set of crosses among selected lines.

4. Update of the estimates of the QTL effects for use in the next selection cycle.

5. Continuation of the process (1-5) using new estimates of QTL effects (Fig. 4).

MAYG strategy:

https://www.agronomy.org/publications/cs/abstracts/44/5/1560

Fig. 4 A schematic illustration of the MAYG strategy to marker-assisted selection. Adapted from Podlich et al., 2004. 

https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.agronomy.org/publications/cs/abstracts/44/5/1560


Breeding by Design

B. Breeding By Design

Markers are useful in development of haplotype maps (see the eModule on Markers and Sequencing). Breeding

by design requires information about chromosome haplotypes. Figure 5 below is an example of a haplotype

map. Breeding by design describes the use of chromosome haplotypes to aid selection of F2 or BC individuals

to develop superior elite line genotype.

Breeding by design describes the use of chromosome haplotypes to aid selection of F2 or BC individuals to

develop superior elite line genotype.

Fig. 5 Chromosome haplotypes. Adapted from Peleman and van der Voort, 2003.



The Principle of Breeding by Design

In Fig. 6, three chromosomes, A, B and C, of �ve parental lines, 1-5 are indicated side by side. Selection of

speci�c recombination points on chromosomes A and B are done and chromosome C is selected from parental

line 1. Dotted lines delineate marker positions used to select for the desired recombinants. The genome

composition of the ideal line with respect to the three chromosomes is indicated.

Breeding by design:

http://www.sciencedirect.com/science/article/pii/S1360138503001341

Fig. 6 The Principle of Breeding by Design. Adapted from Peleman and van der Voort, 2003.

http://www.sciencedirect.com/science/article/pii/S1360138503001341
http://www.sciencedirect.com/science/article/pii/S1360138503001341
http://www.sciencedirect.com/science/article/pii/S1360138503001341


Genomic Selection

Advantage of Using GS

As discussed in previous sections, selection based on the genotype rather than the phenotype may result in

faster and more e�cient ways to conduct selection. However, the paradox of MAS makes detection of

quantitative traits with low heritability less reliable because the power of detecting quantitative trait loci (QTL)

depends on size of the mapping population and heritability of the trait. Also, application of MAS in small

populations may lead to bias in magnitude of QTL effects and estimation of location of QTL. In contrast,

Genomic Selection (GS) is a form of MAS involving estimation of the breeding values of lines in a population by

evaluating their phenotypes and scores of markers that span the entire genome. The incorporation of all marker

information in the GS prediction models helps avoid biased estimate of marker effects allowing the capturing of

variation caused by small-effect QTL.



GS Principles

QTL studies detect in most cases only the "tip of the iceberg", a limited number of QTL representing a small

subset of all QTL affecting the trait(s) of interest. As QTL mapping employs a signi�cance test, most true QTL

are not detected (below signi�cance threshold) (Fig. 7). Locus effect estimates of QTL that are detected are

generally in�ated (Fig. 7; "Beavis effect").

Fig. 7 Bias in effect estimation using traditional MAS approaches.



Application of GS

The application of GS in plant breeding was �rst introduced in the early 2000 (Meuwissen et al., 2001) and is

based on the following principles:

1. Dense marker maps covering all chromosomes allow accurate estimation of breeding values of

individuals that have no phenotypic record and no progeny.

2. Estimation of breeding value requires large number of marker haplotype effects.

3. Methods that are based on prior distribution of variance associated with each chromosome segment

provide more accurate prediction of breeding values.

4. Selection based on genomic estimated breeding value (GEBV) has potential to increase the rate of

genetic gain (Fig. 8) when combined with reproductive techniques, for example, doubled-haploids.

Fig. 8 Genomic selection shortens the breeding cycle by eliminating phenotypic evaluation of lines prior to selection as

breeding materials for the subsequent cycles. Adapted from Heffner et al., 2009.



Important Factors

In applying GS it is also important that:

1. All markers contribute to prediction, i.e. there is no distinction between “signi�cant” and “non-signi�cant”

effects (Fig. 7). Thus, there is no arbitrary exclusion or inclusion of markers. The value of analyzing all

loci is illustrated by Fig. 9.

2. More effects are estimated than there are phenotypic observations.

3. Smaller QTL effects are captured.

4. Genetic relationships are captured.

5. Multiple low cost markers are available.

Fig. 9 Correlations (Corr) from random crosses between simulated (Sm) and several accuracy estmators (sFull = full

Bayesian treatment; sAll = all marker posterior average treatment; sSel = selected marker posterior average treatment;

µAll = all marker cross mean treatment; µSel = selected marker cross mean treatment; µPhen = phenotypic selection).

Adapted from Zhong and Jannink, 2007.



Two Population Types

In GS, two types of populations are considered:

1. Training population

Both genotypic and phenotypic data should be available allowing �tting of a large number of markers as random

effects in a linear model to estimate all marker effects simultaneously. The aim is to capture all of the additive

genetic variance caused by alleles with both large and minor effects.

2. Breeding population

Only genotypic data are required to allow estimates of marker effects for prediction of breeding values, and

selection of lines with GEBV.



GS Methods

The Basic Model

Statistical methods used for GS include, stepwise regression, ridge regression best linear unbiased prediction

(RR-BLUP), and Bayesian estimations (Heffner et al., 2009). The basic model (Habier et al., 2007) underlying

these methods can be written as:

where:

y = a vector of tarit phenotypes

 = the overall mean

xk = a column vector of marker genotypes at locus k

 = the marker effect

 = a 0/1 - indicator variable

e = a vector of random residual effects 

Table 3 Characteristics and trends of performance for BLUP and GS methods. Data from Heffner et al., 2009. 

    Performance with

increased

   

Method Marker

effect;

variance

assumption

Proportion

of

markers

�tted in

model

Marker

density

QTL 

 density

Large-effect

QTL

Small-

effect

QTL

Traditional

BLUP

N/A N/A N/A N/A Captured only

by phenotype

Captured

only by



phenotype

Stepwise

regression

Fixed Subset Reduced Reduced Overestimated Excluded

RR-BLUP

" />

Random;

Equal

All Reduced Increased Underestimated Captured

BayesA Random;

Unique

All>0

All ? Reduced More

accurately

estimated

Captured

BayesB Random;

Unique

Some=0

All Insensitive Reduced More

accurately

estimated

Captured

 QTL, quantitative trait locus. 

 RR, ridge regression

 Source: Fernando (2007). 



Regression Models

The ability of GS to capture information on genetic relatedness is valuable. However, information on genetic

relatedness decays rapidly. Importantly, the amount of information captured is strongly related to the number of

markers �tted by a model. In estimating marker effects, two components contribute to an effect, these are,

marker and error. When the effect is large, chances are that the error is also large. Thus methods that shrink

(regress) the effects toward the mean as of a function of relative error and factor variances are used.

Regression models (e.g., Bayesian) can partition contributions of linkage disequilibrium (LD) versus genetic

relatedness. Thus regression models help and increase in long-term accuracy in estimating marker effects.



Marker Difference

In GS procedures, marker effects are considered to be random, in contrast to MAS, where marker effects are

considered to be �xed effects. The differences between random and �xed marker effects are listed below.

Random markers

• Genome-wide markers

• Each effect considered as coming from a population of marker effects with a probability distribution

• Interested in predicting future values marker effects

• Hypothesis testing may be done on populations, which are considered static

• Estimation and prediction are important

• To predict, one needs to quantify in�uence of error relative to “factor processes”

• Dependence on population properties best addressed by random effect

Fixed markers

• They are developed from candidate loci

• Each locus is different biologically, i.e., there is no population

• Each candidate locus is a hypothesis

• Hypothesis testing based on effects

• Estimation and prediction are not important

• No particular interest in estimating effects as long as a hypothesis is tested

• Future values of effects are also not relevant.



Simulation Studies

GS vs. MARS Comparison

Simulation studies of testcross performance of doubled haploids in maize (Fig. 10) suggest that GS is more

effective than MARS for complex traits under the control of many QTL with low heritability (Table 10). However,

GS is less bene�cial for recurrent selection for choosing parents of breeding populations or selection of single-

crosses (Bernardo and Yu, 2007).

Fig. 10 GS and MARS in maize. Cycle 0 is evaluated during the regular growing season. Cycles 1 and 2 of GS and MARS

are done in a winter nursery where generations can be grown in 1 year. Adapted from Bernardo and Yu, 2007.



Responses to Different Selections

Table 4 Responses to phenotypic, marker-assisted, and genomewide selection among maize doubled haploids. Relative

e�ciencies of MAS and GS are highlighted. Data from Bernardo and Yu, 2007. 

                     Heritability                 

Number of

QTL

Method Number of

Markers

0.20 0.50 0.80

20, 40, or

100

Phenotypic

selection

0 1.60 2.26 2.61

20 MARS 32 2.50

(0.4)

3.14

(0.4)

3.38

(0.4)

  64 2.72

 (0.3)

3.42

(0.4)

3.73

(0.4)

  128 2.54

(0.3)

3.47

(0.2)

3.87

(0.4)

  256 2.26

(0.2)

3.19

(0.2)

3.72

(0.2)

Genomewide

selection

64 2.86 3.50 3.76

  128 2.98 3.67 4.02

  256 3.06 3.72 3.98

  512 3.05 3.68 4.10

  768 3.06 3.73 4.05

RGS:MARS
¶   113% 107% 106%

R(GS-PS):(MARS-PS)
#   130% 121% 118%



MAS Compared to GS

The similarities and differences between MAS and GS are shown in Figure 11. In general, MAS involves

identi�cation of alleles for development of markers for use in pre-selection of individ-uals containing an allele

or interest. In contrast, GS does not require identi�cation of genes as a source of markers for pre-selection of

segregants with desirable alleles. Instead, whole chromosome segments are scanned to estimate the effect of

QTL on a trait of interest.

Fig. 11  A comparison of GS and MAS methods in plant breeding. Both methods contain training and breeding stages. The

training stage involves identi�cation of QTL (by MAS approaches) to generate formulae for predicting GEBV (GS models).

In the breeding stage, desirable lines are selected based on markers (MAS) or GEBV (GS). Adapted from Nakaya et al.,

2012.



Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary ( < 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?



References (1)

Asoro, F. G., M. A. Newell, W. D. Beavis, M. P. Scott, and J-L. Jannick. 2011. Accuracy and Training population

design for genomic

selection on quantitative traits in elite North American oats. Plant Genome 4:

132-144. https://www.crops.org/publications

/tpg/articles/4/2/132

Bernardo, R. 2002. Breeding for quantitative traits in plants. Stemma Press, Woodburry.

Bernardo, R. 2008. Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20

Years. Crop Sci.

48:1649-1664. https://www.agronomy.org/publications/cs/abstracts/48/5/1649

Bertrand, C. Y. C., and D. J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding

in the twenty-�rst century.

Phil. Trans. R. Soc. B 363:557-572. http://rstb.royalsocietypublishing.org/content/363/1491

/557.full.pdf+html

Bernardo, R., J. Yu. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47:

1082-1090.

https://www.agronomy.org/publications/cs/abstracts/47/3/1082

Cregan, P. B., J. Mudge, E. W. Fickus, D. Danesh, R. Denny, and N. D. Young. 1999. Two simple sequence repeat

markers to select for

soyben cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99: 811-818.

Eagles, H.A., H. S. Bariana, F. C. Ogbonnaya, G. J. Rebetzke, G. J. Hollamby, R. J. Henry, P. H. Henschke, and M.

Carter. 2001.

Implementation of markers in Australian wheat breeding. Aust. J. Agric. Res. 52: 1349-1356.

http://www.publish.csiro.au/?

act=view_�le&�le_id=AR01067.pdf

Eathington, S. R., T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull. 2007. Molecular markers in a

commercial breeding program.

Crop Sci. 47(S3):S154-S163. https://www.soils.org/publications/cs/articles/47/Supplement_3/S-154

Habier, D., R. L. Fernando, and J. C. M. Dekkers. 2007. The impact of genetic relationship information on

genome-assisted breeding values.

Genetics 177:2389-2397. http://www.genetics.org/content/177/4/2389.full.pdf+html

https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.crops.org/publications/tpg/articles/4/2/132
https://www.agronomy.org/publications/cs/abstracts/48/5/1649
https://www.agronomy.org/publications/cs/abstracts/48/5/1649
https://www.agronomy.org/publications/cs/abstracts/48/5/1649
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
http://rstb.royalsocietypublishing.org/content/363/1491/557.full.pdf+html
https://www.agronomy.org/publications/cs/abstracts/47/3/1082
https://www.agronomy.org/publications/cs/abstracts/47/3/1082
https://www.agronomy.org/publications/cs/abstracts/47/3/1082
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
http://www.publish.csiro.au/CP/AR01067
https://www.soils.org/publications/cs/articles/47/Supplement_3/S-154
https://www.soils.org/publications/cs/articles/47/Supplement_3/S-154
https://www.soils.org/publications/cs/articles/47/Supplement_3/S-154
http://www.genetics.org/content/177/4/2389.full.pdf+html
http://www.genetics.org/content/177/4/2389.full.pdf+html
http://www.genetics.org/content/177/4/2389.full.pdf+html


Heffner, E. L., M. E. Sorrells, and J-L. Jannick. 2009. Genomic selection for crop improvement. Crop Sci 49:

1-12.

https://www.crops.org/publications/cs/abstracts/49/1/1

Hospital, F. 2009. Challenges from effective marker-assisted selection in plants. Genetics 136:303-310.

http://www.springerlink.com/content/0517x74lw814j536/fulltext.pdf

Lande, R., and R. Thompson. 1990. E�ciency of marker-assisted selection in the improvement of quantitative

traits. Genetics 124:743-756.

http://www.genetics.org/content/124/3/743.full.pdf+html

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide

dense marker maps. Genetics

157: 1819-1829.http://www.genetics.org/content/157/4/1819.full.pdf

Moreau, L., A. Charcosset, F. Hospital, and A. Gallais. 1998. Marker-assisted selection e�ciency in populations

of �nite size. Genetics

148:1353-1365. http://www.genetics.org/content/148/3/1353.full.pdf

Moreau, L., S. Lemarié, A. Charcosset, and A. Gallais. 2000. Economic e�ciency of one cycle of marker-assisted

selection. Crop Sci.

40:329-337.https://www.soils.org/publications/cs/articles/40/2/329

https://www.crops.org/publications/cs/abstracts/49/1/1
https://www.crops.org/publications/cs/abstracts/49/1/1
http://www.springerlink.com/content/0517x74lw814j536/fulltext.pdf
http://www.springerlink.com/content/0517x74lw814j536/fulltext.pdf
http://www.springerlink.com/content/0517x74lw814j536/fulltext.pdf
http://www.genetics.org/content/124/3/743.full.pdf+html
http://www.genetics.org/content/124/3/743.full.pdf+html
http://www.genetics.org/content/124/3/743.full.pdf+html
http://www.genetics.org/content/157/4/1819.full.pdf
http://www.genetics.org/content/157/4/1819.full.pdf
http://www.genetics.org/content/157/4/1819.full.pdf
http://www.genetics.org/content/148/3/1353.full.pdf
http://www.genetics.org/content/148/3/1353.full.pdf
http://www.genetics.org/content/148/3/1353.full.pdf
https://www.soils.org/publications/cs/articles/40/2/329
https://www.soils.org/publications/cs/articles/40/2/329
https://www.soils.org/publications/cs/articles/40/2/329


References (2)

Nakaya, A., and S. N. Isobe. 2012. Will genomic selection be a practical method for plant breeding? Annal. Bot.

110. 1303-1316. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478044/pdf/mcs109.pdf

Peleman, J. D., and J. R. van der Voort. 2003. Breeding by design. Trend Plant Sci. 8: 330-334. http://ac.els-

cdn.com/S1360138503001341/1-s2.0-S1360138503001341-main.pdf? _tid=e01e4c9a-2764-11e2-993d-

00000aacb362&acdnat=1352132678_def03e56a23798fbdad2950983383f1d

Piepho, H. P., J. Möhring., A. E. Melchinger, and A. Büchse. BLUP for phenotypic selection in plant breeding and

variety testing. Euphytica. 161: 209-228. http://download.springer.com/static/pdf/523

/art%253A10.1007%252Fs10681-007-

9449-8.pdf?auth66=1361460647_224fab2751ce48069e8f382ef03b7ed0&ext=.pdf

Podlich, D. W., C. R. Winkler, and M. Cooper. 2004. Mapping As You Go: An effective approach for marker-

assisted selection of complex traits. Crop Sci. 44: 1560-1571. https://www.agronomy.org/publications

/cs/abstracts/44/5/1560

Reyna, N., and C. H. Sneller. 2001. Evaluation of marker-assisted introgression of yield QTL alleles into adapted

soybean. Crop Sci. 41: 1317-1321. https://www.crops.org/publications/cs/abstracts/41/4/1317

Tanksley, S. D., and C. M. Rick. 1980. Isozymic gene linkage map of the tomato: Applications in genetics and

breeding. Theor. Appl. Genet. 57: 161-170. http://download.springer.com/static/pdf/915

/art%253A10.1007% 252FBF00279708.pdf?auth66=1354119538_b401e5af51625e4b43d42146e74850a9&

ext=.pdf

Utz, H.F., and A.E. Melchinger. 1994. Comparison of different approaches to interval mapping of quantitative

trait loci. In: Ooijen, J.W. van, and J. Jansen (eds.), Biometrics in Plant Breeding: Applications of Molecular

Markers. Wageningen, 195-204.

Yousef, G. G., and J. A. Juvik. 2001. Comparison of phenotyoic and marker-assisted selection for quantitative

traits in sweet cor. Crop Sci. 41: 645-655. https://www.crops.org/publications/cs/abstracts/41/3/645

Zhong, Shengqiang, and Jannink, Jean-Luc. 2007. Using QTL results to discriminate among crosses based on

their progeny mean and variance. Genetics 177(1): 567-576. https://doi.org/10.1534/genetics.107.075358

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478044/pdf/mcs109.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478044/pdf/mcs109.pdf
https://www.ncbi.nlm.nih.gov/pubmed/12878017
https://www.ncbi.nlm.nih.gov/pubmed/12878017
https://www.ncbi.nlm.nih.gov/pubmed/12878017
https://www.ncbi.nlm.nih.gov/pubmed/12878017
https://www.ncbi.nlm.nih.gov/pubmed/12878017
https://www.ncbi.nlm.nih.gov/pubmed/12878017
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.8373&rep=rep1&type=pdf
https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.agronomy.org/publications/cs/abstracts/44/5/1560
https://www.crops.org/publications/cs/abstracts/41/4/1317
https://www.crops.org/publications/cs/abstracts/41/4/1317
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
http://tgc.ifas.ufl.edu/vol48/volume48.pdf
https://www.crops.org/publications/cs/abstracts/41/3/645
https://www.crops.org/publications/cs/abstracts/41/3/645
https://doi.org/10.1534/genetics.107.075358
https://doi.org/10.1534/genetics.107.075358


Acknowledgements

This module was developed as part of the Bill & Melinda Gates Foundation Contract No. 24576 for Plant

Breeding E-Learning in Africa.

Molecular Plant Breeding Marker-Assisted Selection and Genomic Selection Author: Thomas Lübberstedt,

William Beavis, and Walter Suza (ISU)

Multimedia Developers: Gretchen Anderson, Todd Hartnell, and Andy Rohrback (ISU)

How to cite this module: Lübberstedt, T., W. Beavis, and W. Suza. 2016. Marker-Assisted Selection and Genomic

Selection. In Molecular Plant Breeding, interactive e-learning courseware. Plant Breeding E-Learning in Africa.

Retrieved from https://pbea.agron.iastate.edu.

https://pbea.agron.iastate.edu/
https://pbea.agron.iastate.edu/


Source URL: https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/marker-assisted-

selection-and-genomic-selection-7?cover=1


