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Introduction

The analysis of variance is useful for testing the hypothesis that one or more treatments applied in an

experiment has a signi�cant effect or response. If we declare the F-test to be signi�cant, we can say, within the

limits of probability allowed by our test, that at least one of the treatments tested is signi�cantly different from

the others. However, with the exception of the limited case where only two treatments are compared, the

ANOVA does not indicate how treatment responses vary from one another. In order to answer this important

question we must employ other statistical tests commonly referred to as mean comparison procedures.

Objectives

• About the various approaches used to compare treatment means

• How to use the least signi�cant difference (LSD) to test the difference between adjacent means

• How to use HSD (honestly signi�cant difference) to distinguish differences among several means

• The advantages of using contrasts to test differences

• How to choose contrasts to identify speci�c treatment effects

• How to use contrasts to analyze trends for quantitative variables



Comparing Means

Many Approaches

There Are Many Approaches to Comparing Means

There are many ways to compare treatment means calculated from an experiment. A great deal of controversy

exists about which ones to use. In this lesson we will present three approaches to evaluating mean responses

and discuss under what circumstances each should be used:

• Multiple comparison procedures

• Contrasts: Planned T-tests or F-tests

• Trend analysis



Multiple Comparison Procedures

Pairwise comparison procedures such as the Least Signi�cant Difference (LSD) and Tukey's Honestly

Signi�cant Difference (HSD) are useful for making comparisons among levels of qualitative factors. These

tests are appropriate for experiments such as cultivar and herbicide trials where you are interested in

comparing a large number of treatments. In these experiments you typically want to identify the superior

treatments while having little or no prior knowledge with which to develop planned comparisons between

speci�c means or groups of means.

The LSD, HSD and other multiple comparison techniques, such as Duncan's Multiple Range test (DMRT), are

commonly used and misused mean comparison procedures in Agronomy. The HSD is more conservative than

the LSD. The LSD is the easiest to use and provides valid results as long as you limit the number of

comparisons made to a reasonable number. Some statisticians recommend using the LSD only to compare

adjacent means or for making preplanned comparisons. An example of a reasonable preplanned comparison

would be comparing individual cultivar means against a common control cultivar. Even in this case, there is a

test, called Dunnett's procedure, which is somewhat better than the LSD. However, we will concentrate on the

LSD and HSD in this unit. We recommend only using the LSD following a signi�cant F-test in the ANOVA. This is

known as an F-protected LSD, a more conservative approach than just comparing pairs of means without a

signi�cant F. However, the use of the LSD test is really a matter of preference, and unprotected LSD

comparisons are often made. The LSD and HSD should both only be used when the other two approaches to

comparing means described in the next screen are not possible.
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Planned t-tests or F-tests

Contrasts: Planned T-Tests or F-Tests

In many experiments, the treatment structure itself suggests certain planned comparisons. For example,

consider a fertility trial in which urea, ammonium nitrate, ammonium sulfate, calcium nitrate, and potassium

nitrate are compared as sources of fertilizer nitrogen. The treatment structure suggests at least three

meaningful comparisons:

1. urea vs. nitrate sources,

2. urea vs. ammonium sources, and

3. nitrate vs. ammonium sources.

These comparisons can be easily made by doing a t-test for contrasts of means. In an ANOVA, this can also be

done by partitioning the sum of squares for treatments into individual single-degree-of freedom contrasts that

can be tested against the error mean square. The use of planned F-tests does not require a signi�cant F-test for

treatments and generally results in more sensitive tests than multiple comparison procedures.



Trend Analysis

For quantitative data such as fertilizer and herbicide application rates, trend analysis is more appropriate than

the other mean comparison procedures. With quantitative variables it is possible to examine a functional

relationship between the dependent variable and the treatment (independent) variable. By describing the

relationship it is not only possible to predict the treatment response for the treatment rates applied in the

experiment, but for every possible value between the lowest and highest rates applied.

There are several approaches to trend analysis. A common one is to use orthogonal polynomial coe�cients to

determine the highest order polynomial that describes the treatment response. This approach is useful for

detecting whether the response is linear or has curvature. Another approach to trend analysis is curve �tting

using regression techniques. These topics will be covered in greater detail in the modules on Multiple and

Nonlinear Regression.
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Least Significant Difference

Stated Level of Significance

Work by Cochran and Cox (1957) indicated that experimenters who looked at the data after completing the

experiment would tend to choose the highest and lowest treatments and compare them using the LSD. Because

of this, the chance of making a Type I error increases dramatically depending on the number of treatments. 

In other words, the probability of making a Type I error when you use LSD to compare highest and lowest

yielding of 20 varieties in a variety trial is 90%! This amounts to a �shing expedition for variety differences!

There are ways of testing a mean (not originally slated to be compared) which appears to be different after

gathering the data. This can be done using methods found in Cochran and Cox (1957).

Table 1

# of Treatments Alpha

3 0.13

6 0.40

10 0.60

20 0.90



Definition

The Least Signi�cant Difference (LSD) test is an easy-to-use and valuable test for comparison. However, it must

be used with caution. The LSD test should be used only to compare adjacent means in an array (where the

means are arranged from highest to lowest value). In addition, comparisons should be meaningful and pre-

planned. If used indiscriminately to locate any chance difference, the test is reduced to a �shing expedition —

save the �shing for a real lake. In other words, the LSD and any other means comparison test should not be

used to locate any signi�cant differences which may exist, but rather, to answer the questions that interest you!

In addition, as you make more and more comparisons with an LSD, the probability of making a Type I error

becomes higher, and the alpha level for all comparisons no longer is the stated level of signi�cance. Instead,

the chance of falsely declaring a signi�cant difference across all the comparisons made is multiplied. The

result is an increased likelihood of falsely declaring a signi�cant treatment effect somewhere in the whole

experiment! Another way of stating this is that the more decisions you make, the more likely you are to make an

error so it makes sense to limit them to include only the most important ones. As mentioned earlier, a good way

to lessen the risk of this occurring is to use the F-protected test. This is accomplished by not using the LSD

unless an F-test has already demonstrated that a signi�cant treatment effect exists.

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/stated-level-significance
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Study Question 1

You are testing the response of 5 different herbicide treatments at four different levels. Comparing the means

of two treatments (at an alpha of 0.05), how many tests would you expect to �nd signi�cantly different by

chance?

You are testing the response of 5 different herbicide treatments at four different levels. Comparing
the means of two treatments (at an alpha of 0.05), how many tests would you expect to �nd
signi�cantly different by chance?

9

5

20

1

 Check



Formulas

The LSD test is derived from the t-test we studied earlier. Speci�cally, it uses the t-test for differences between

means to determine the minimum difference necessary for those two means to be signi�cantly different. The

numerator in the original equation for the t-value is replaced by the LSD:

where: 

 = difference in means for treatments 1 and 2

 = standard error of difference 

= t - value appropriate df and signi�cance level 

Solving for LSD gives:

where: 

SED = standard error of difference

t = t - value appropriate df and signi�cance level

Equation 1

Equation 2



CRD and RCRD

For two treatments in a Completely Randomized Design (CRD) or Randomized Complete Block Design (RCRD),

the standard error of the difference (SED) is the square root of the sum of variances of each mean, or (S2/n1 +

S2/n2). When the two means have the same number of observations, n1 = n2 = r replications each, the sd
2 =

2s2/r. The estimate s2 is the residual (error) mean square from the ANOVA table.

where: 

 = residual mean square

r = number of replications

t = t - value for appropriate df and signi�cance level 

Equation 3



LSD Example

We will use a similar dataset as in the module on Two Factor ANOVAs, where three hybrids were tested at

different plant densities to illustrate several methods of means comparisons, even though trend analysis or

orthogonal comparisons are the most suitable methods for this experiment. We start by showing the LSD

method for testing for differences in means. The completely randomized design experiment produced the

following means (Table 2).

The treatment means are viewed more easily as a list of yields (Table 3):

Table 2 Yield data (t/ha) for three corn varieties planted at three populations. 

Population

(plats/m2)

A B C

7.5 9.34 9.27 8.42

10 8.43 9.86 9.43

12.5 10.48 7.72 5.52

Table 3 Yield data (t/ha) three corn varieties planted at three populations 

Population

(plants/m2)

Variety mean

7.5 A 9.34

7.5 B 9.27

7.5 C 8.42

10 A 8.43

10 B 9.86

10 C 9.43

12.5 A 10.48



Population

(plants/m2)

Variety mean

12.5 B 7.72

12.5 C 5.52



Study Question 2

What is the LSD which would be used for comparison? (Hint: The error mean square is 0.669, based
on 18 df, and there are 3 reps per treatment.)   

1.403

1.672

1.206

 Check



Study Question 3

How many signi�cant differences could you �nd between adjacent means (note that you will have
to reorder the treatment means from Table 3)? (Hint: Be sure to �rst arrange the means in ranked
order before comparing adjacent means with LSD.)   

1

4

0

2

3

 Check



Conclusions

It is obvious that there are individual mean comparisons that exceed the LSD. If for example, variety C had been

planted as a control with which we intended to compare the other two varieties at each population, then we

could conclude that variety A was greater than the control for the 12.5 population level. 

Table 2 Yield data (t/ha) for three corn varieties planted at three populations. 

Population

(plats/m2)

A B C

7.5 9.34 9.27 8.42

10 8.43 9.86 9.43

12.5 10.48 7.72 5.52

Table 3 Yield data (t/ha) three corn varieties planted at three populations 

Population

(plants/m2)

Variety mean

7.5 A 9.34

7.5 B 9.27

7.5 C 8.42

10 A 8.43

10 B 9.86

10 C 9.43

12.5 A 10.48

12.5 B 7.72

12.5 C 5.52



Calculations

The least signi�cant difference (LSD) is probably the most often used mean comparison procedure for

interpreting agronomic research. Because only one value is required, it is easy to calculate and easy to apply.

The LSD often is used for variety trials and other experiments where a large number of qualitative treatments

are compared. It is typically included at the bottom of a column of means for which its use is intended.

For the purpose of this exercise we will use results from another corn experiment. This was a �eld experiment

in which three corn hybrids were fertilized with three different rates of N fertilizer. The experiment was

replicated three times. The objective of the experiment was to determine the effects of hybrid and N fertilization

on yield of corn planted in narrow strips. Hybrids and N Rates were in factorial combination so there are a total

of nine (three hybrids × three N Rates) treatments. The analysis of variance and summary statistics for the

experiment are presented in the Excel �le QM-mod10-ex1.xls.

https://pbea.agron.iastate.edu/files/qm-mod10-ex1xls
https://pbea.agron.iastate.edu/files/qm-mod10-ex1xls


Steps and Results

Calculate an LSD appropriate for comparing the nine treatment means presented in the Summary table of the

ANOVA worksheet.

steps

1. Open the Excel �le QM-mod10-ex1.xls.

2. Calculate the standard error of the difference for treatments using the formula: 

3. Activate cell B10 by clicking on it.

4. Enter the Excel formula: =SQRT(2*D6/3) to calculate the SED.

5. Or use a calculator to compute the standard error of the difference (SED).

6. Calculate the LSD using the formula: LSD = t × SED.

7. Enter the Excel formula: =TINV(0.05,18)*B10 to calculate the LSD.

8. If you do not wish to use Excel, �nd the 0.05 two-tailed t-value for 18df and calculate the LSD.

9. Sort the means in the data Summary table by yield.

10. Select all data in the Summary table (A14:E23).

11. Select Sort from the Data menu above.

12. Sort by the Average �eld.

results

Use the LSD to compare adjacent means. Are there any signi�cant differences? Despite the warnings in the text

and lecture notes, the LSD is often used to compare pairs of means which are not adjacent to one another. How

many pairwise comparisons are possible with nine treatments? If you were to use this (non-recommended)

means separation method, are there any pair of means with a difference > than the LSD that would be

considered different (at the .05 alpha level).

Equation 4

https://pbea.agron.iastate.edu/files/qm-mod10-ex1xls
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Exercise 1

Ex. 1: Calculating LSD and Tukey's HSD

Notes to Educators and Students

This activity will focus on calculating LSDs and HSDs in R and then interpreting them, it will not focus heavily on

the mathematics involved in these calculations. Additional materials on calculating LSDs and HSDs can be

found at the end of this activity.

R Code Functions

• setwd() 

• aov() 

• LSD.test()

• install.packages()

• summary()

• HSD.test()

• read.csv()

• library()

The Scenario

You are a graduate student studying the effects of planting density on the top 3 maize hybrids currently grown

in western Iowa and Nebraska and you wish to assess whether any of the hybrids are signi�cantly affected by

the planting density. You plant each of the 3 hybrids at 7.5, 10.0, and 12.5 plants/m2 giving you a total of 9

treatments for your experiment, and each treatment is replicated 3 times. At harvest, you calculate the yield in

t/ha for each hybrid at each planting density. Ultimately you want to make a recommendation to farmers in

western Iowa and Nebraska for each hybrid at a given density, and one way that can help you make that

decision is to calculate the Least Signi�cant Differences.

Activity Objectives

• Calculate the Least Signi�cant Differences for the data set

• Calculate the Honestly Signi�cant Differences for the data set

• Understand how the two calculations differ and when to use them

Ex. 1: What are LSDs and HSDs

So What are LSDs and HSDs? 



They are both methods of making pairwise comparisons between different levels of a qualitative factor. LSDs

are an easy to use method for making these comparisons, but a certain level of caution is advised because the

more comparisons you make the greater the likelihood of making a Type I error. That is why you should only

calculate LSDs if it is backed by a signi�cant F-value. For instance, we know from our ANOVA that Hybrid has a

signi�cant effect on yield but Population does not. Therefore it would be better to only calculate LSDs

comparing different hybrids because we already know this factor is already signi�cant. Performing LSDs on

Population, which is not signi�cant, could result in a Type I error.

HSDs are another method and are more conservative in making the pairwise comparisons by being less likely to

result in a Type I error because the test statistic controls for the Type I error rate so that it stays at 0.05%. HSDs

are good for multiple comparisons whereas LSDs are only good for a few speci�c comparisons. Remember, if

you are only comparing two treatments then LSD=HSD. For a more detailed look at how these values are

calculated, see the supplementary materials at the end of this activity.

Ex. 1: Getting Ready

First, set your working directory and read in the data set.

setwd("C:/Users/dadykema/Desktop/SAS to R")

corn<-read.csv("exercise.10.2.data.csv",header=T)

You will also have to install a new package called “agricolae” before you can calculate LSDs and HSDs.

install.packages(”agricolae”)

Before we can calculate LSDs and HSDs, we need to run an ANOVA in order to see if any of the variables are

signi�cant. If we were to calculate LSDs without an ANOVA �rst, we would have a greater chance of making a

Type I error. Also, make sure that Population is considered to be as a factor or you will have incorrect degrees

of freedom in your ANOVA.

corn<-read.csv(”exercise.10.2.data.csv”,header=T)

corn$Population<-as.factor(corn$Population)

Population<-corn$Population

Ex. 1: ANOVA Output

Take a look at the ANOVA output. Are any of the factors signi�cant here? In this example we can see that Hybrid

is signi�cant so we will calculate LSDs for this factor and not for Population.

cornaov<- aov(Yield ~ Population*Hybrid, data=corn)



Summary(cornaov)

                          Df Sum Sq Mean Sq F value Pr(>F)

Population             2   9.18   4.588   2.114 0.1498

Hybrid                     2  12.18   6.342   2.922 0.0796

Population:Hybrid     4  29.30   7.325   3.375 0.0316

Residuals            18  39.07   2.170

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Next, load the ‘agricolae’ package.

library(”agricolae”)

Once you do this, you can calculate your LSDs and HSDs for Hybrid.

Ex. 1: LSD Test

Use the LSD.test() function and be sure to include the model that we ran, and then the variable we wish to

analyze: 

LSD.Hybrid<- LSD.test(cornaov, “Hybrid”)

LSD.Hybrid

$statistics

         Mean          CV  MSerror         LSD

    8.718148 16.89873 2.170485 1.45909

$parameters

    Df ntr  t.value

    18   3 2.100922

$means

    Yields      std r      LCL      UCL  Min   Max

A 9.418889 2.061822 9 8.387156 10.45062 5.39 11.79

B 8.947778 1.362028 9 7.916045  9.97951 6.09 11.20

C 7.787778 1.893949 9 6.756045  8.81951 4.65 10.30

$comparison



NULL

$groups

  trt    means  M

1   A 9.418889  a

2   B 8.947778 ab

3   C 7.787778  b

Ex. 1: HSD Test

It is the same process for the HSDs:

HSD.Hybrid<- HSD.test(cornaov, “Hybrid”)

HSD.Hybrid

$statistics

         Mean          CV  MSerror          HSD

    8.718148 16.89873 2.170485 1.772477

$parameters

    Df ntr StudentizedRange

    18   3         3.609304

$means

    Yields      std r  Min   Max

A 9.418889 2.061822 9 5.39 11.79

B 8.947778 1.362028 9 6.09 11.20

C 7.787778 1.893949 9 4.65 10.30

$comparison

NULL

$groups

  trt    means  M

1   A 9.418889  a

2   B 8.947778  a

3   C 7.787778  a

Ex. 1: LSD Output



From this output you can see that the calculated LSD (23.53) is smaller than the HSD (28.59) because the HSD

is more conservative (blue arrows). When the treatment means are compared, we can see with the LSD method

we see that Hybrids A and C are different, but when we look at the HSD results, they are not considered different

due to the LSD not controlling for the Type I error (red arrows).

Now lets take a look at Population. We already know from the ANOVA that this factor was not signi�cant, but

let’s see if we can con�rm this with LSDs and HSDs.

LSD.Population<- LSD.test(cornaov, “Population”)

LSD.Population

$statistics

Mean         CV             MSerror  LSD

140.6185  16.89662   564.527   23.53131

$parameters

Df   ntr   t.value

18   3    2.100922

$means 

  Yield std r LCL UCL Min Max

30 145.3222 17.75287  9 128.6831 161.9614 118.2 177.4

40 149.0222 30.27506 9 132.3831 165.6614 86.9 190.2

50 127.5111 37.45285 9 110.8720 144.1503 75.0 172.6

$comparison 

NULL 

$groups



  trt means M

1 40 149.0222 a

2 30 145.3222 a

3 50 127.5111 a

Ex. 1: HSD Output

HSD.Population<- HSD.test(coranaov, "Population") 

HSD.Population

$statistics      

Mean CV MSerror HSD

140.6185 16.89662 564.527 28.58542

 

$parameters
   

DF ntr StudentizedRange

18 3 3.609304

 

$means
         

  Yield std r Min Max

30 145.3222 17.75287 9 118.2 177.4

40 149.0222 30.27506 9 86.9 190.2

50 127.5111 37.45285 9 75.0 172.6

 

$groups
     

  trt means M

1 40 149.0222 a

2 30 145.3222 a

3 50 127.5111 a

Ex. 1: Review

We can see that the LSD and HSD calculations are the same as when we calculated for hybrid, but when we

compare the means, we see that there are no differences between the treatments. This isn’t surprising

considering that we didn’t �nd a signi�cant value in the ANOVA for Population.

Review Questions



• What have we learned from this lesson?

• How do LSDs and HSDs help make selection decisions?

Ex. 1: Supplement - Calculate LSD

How to Calculate Least Significant Difference 

Remember: you want to know the difference between the means of the different treatments, but how do you

decide if that difference is signi�cant? Using Fisher’s least signi�cant differences lets you calculate the

smallest difference between means needed in order to still be a statistically signi�cant difference. This formula

is based on the t-test which allows you to calculate the difference between two means.

The formula:

Table 4

R Code Glossary

setwd("") Set the working directory, be sure to use your own �le path.

install.packages("") Install a new R package on your computer. You only need to install a

package once, unless there is an update of which R should notify you. 

read.csv("") Read in a .csv �le. Remember to include if it has a header or not. 

aov(y ~ A + B + A:B,

data=mydataframe)

Perform a 2-factor analysis of variance on an R object. Can also write

as aov(y~A*B, data = mydataframe). 

summary() Results the summary of an analysis.

library("") Loads a package you have already downloaded. 

LSD.test(anova output,

"variable")

Calculates LSD for an ANOVA you have already run for a particular

variable in your data set. 

HSD.test(anova output,

"variable")

Calculates HSD for an ANOVA you have already run for a particular

variable in your data set. 

Equation 5



where:

t = the critical value from teh t - distribution using the degrees of freedom from the denominator of the F -

Statistic 

MSE = this comes from the ANOVA test which you must run prior to calculating the LSDs 

n = number of scores used to calculate the mean

Ex. 1: Supplement - LSD Calculation Steps

Calculate the LSD:

Step 1: Run the ANOVA. From this you will get the mean square and the degrees of freedom. Important!!!!! If you

don’t have a signi�cant F-statistic for your variable, this test will increase the likelihood of a Type I error!!!!!

Step 2: Find the critical t-value. You need to choose your alpha level (ex: 0.05) and use the appropriate degrees

of freedom.

Step 3: Plug your information into the given formula and solve.

Ordering the means:

Step 1: After you calculate the LSD, you need to rank the means of the variable from lowest to highest.

Table 5

Treatment Mean Yield

3 115

1 117

5 121

4 124

2 128

6 135



Step 2: Calculate the differences between each mean to see if the difference is greater than the Least

Signi�cant Difference that you have already calculated. Hint: start with the highest and lowest means. If they

are not signi�cantly different, then none of the means between them are signi�cantly different and then test

ends here. If they are signi�cant, continue by comparing the highest and second lowest and the second highest

with the lowest. Continue until there are no more signi�cantly different comparisons.

Step 3: You can visualize the differences between the means by writing the treatments horizontally.

3     1     5     4     2     6

Step 4: Underline the treatments that are not signi�cantly different and ignore the lines that fall completely

within the boundaries of other lines.

3     1     5     4     2     6

________

       ________

              ________

                            _____

Ex. 1: Supplement - LSD Results

Step 5: Use lowercase letters to label each line. 

Step 6: You can do this in table format as well, and this is what you will see in the R output.

Fig. 1



Basically, if any means share a common letter, they are not signi�cantly different!

Ex. 1: Supplement - HSD Test

Tukey's Honestly Significant Difference 

This procedure is essentially the same as the LSD, but this test takes into consideration the number of

treatment means and utilizes the studentized range statistic to control for the Type I error. This is because the

test statistic already limits the Type I error to 0.05.

To �nd the studentized range statistic (q) you need to know two values:

• p: The number of treatments for your group

• f: the number of error degrees of freedom

You can look up the corresponding q value using these values in a table online (tukey’s test statistic). One you

have your q value, use the formula to calculate the HSD:

Here, r is the number of replications. 

Table 6

Treatment Mean Yield

3 115 a

1 117 ab

5 121 abc

4 124 bc

2 128 cd

6 135 d

Equation 6



Once you calculate the HSD, you can use the same procedure as the LSD to �gure out which means are

signi�cantly different.

Ex. 1: Supplement - LSD and HSD Resources

How to Calculate the Least Signi�cant Difference (LSD)." Statistics How To. Web. 8 Mar. 2017.

http://www.statisticshowto.com/how-to-calculate-the-least-signi�cant-difference-lsd

"MEAN SEPARATION TESTS (LSD AND Tukey’s Procedure)." North Dakota State University. Web. 8 Mar. 2017.

http://www.ndsu.edu/faculty/horsley/MNSepTst.pdf

http://www.statisticshowto.com/how-to-calculate-the-least-significant-difference-lsd
http://www.statisticshowto.com/how-to-calculate-the-least-significant-difference-lsd
https://www.ndsu.edu/faculty/horsley/MNSepTst.pdf
https://www.ndsu.edu/faculty/horsley/MNSepTst.pdf


Study Question 4

Which of the differences between adjacent means from the Exercise. 1 was signi�cant?

\(3 \gg 6\)

None of These

\(5 \gg 8\)

\(6 \gg 9\)

\(1 \gg 4\)

\(4 \gg 7\)

\(7 \gg 2\)

\(8 \gg 3\)

\(2 \gg 5\)

 Check



Study Question 5

You have decided that the testing in the Exercise. 1 at the 0.05 level is not su�cient. If the
signi�cance was changed to 0.01, would the 1-4 treatment difference still be signi�cant?

No

Yes

 Check



Multiple Range Tests

Calculating Differences

The multiple range tests are extensions of the LSD. When there are several means, for example in the range

between the highest and lowest, the LSD is multiplied by a factor depending on the number of means. For

example, in the Duncan's MRT, the LSD might be multiplied by 1.14 if we have 9 means counting the lowest up to

the highest, or 1.08 if there are 4 in the range tested (for example �rst to fourth or third to sixth). We only

declare the highest and lowest different if their difference exceeds 1.14 times the LSD.

We have described the method for testing various ranges of means, but will rely on the computer to actually

carry out a multiple range test (MRT). We have studied the method to understand how computer programs

assign the same letter to ranges that are not signi�cantly different. We will not, however, be laboring through all

the calculations done by a computer in a MRT.

The main point about output from a MRT is to realize that means which share a common letter are not

signi�cantly different. Suppose after a MRT, our mean yields in an experiment with 6 treatments are listed as:

Table 7

Treatment Mean Yield

3 115 a

1 117 ab

5 121 abc

4 124   bc

2 128     cd

6 135       d



Definition

Multiple range tests protect better than LSD against Type I errors.

The LSD discussed in the previous section works well for comparing selected means, usually adjacent means,

in an experiment. The method is not useful for numerous comparisons or for comparing all the means. In an

experiment with nine treatments there are 36 [9(9 - 1)/2] pairwise comparisons that can be made. If you were to

use an LSD at the P = 0.05, then you might expect to make up to two Type I errors (0.05 x 36 = 1.8) among all

the comparisons assuming there are no real differences among the treatments. The more comparisons you

make, the more likely you are to make a mistake using the LSD, so we naturally try to limit our comparisons to

those that are most important to us.

What if we want to make comparisons between all means? For example, what if we are comparing the grain

yields of multiple corn hybrids? In this case, we can employ a Multiple Range Test. Such a test conservatively

adjusts the required difference for signi�cance to adjust for the distance between means in an array. The

Honestly Signi�cant Difference (HSD) is one of the tests for this purpose.



HSD

The HSD test, like the LSD test, determines the minimum signi�cant difference (MSD) between means arrayed

by magnitude (value). This difference is MSD = Q (S2/r)1/2, which is essentially the same formula as that for the

LSD, except that Q contains a modi�ed t-value times √2. For an experiment comparing only two means, LSD =

HSD. When there are more than two means to be compared, the HSD controls the "experimentwise" Type I error

rate to be 0.05. In other words, the HSD ensures that even with, say 15 treatment means, you will only falsely

declare a difference to be signi�cant in 5% of such experiments. However, with the HSD, individual comparisons

are made at a P somewhat less than the stated probability level, so it is much more conservative than the LSD,

which controls "comparisonwise" Type I error rate.

Appendix Table 6 has a column for error df on the left and separate columns for numbers of means compared

(2 up to 20). The studentized range (Q) is then read from the table. For an experiment with the broadest

comparison of six means with 24 df for the error mean square, Q = 4.373.



How to do HSD

The HSD multiple range test should be conducted in the following manner.

1. Arrange means from highest to lowest.

2. Compare the highest and lowest mean values. If the difference between the two values is not signi�cant,

draw a line beside the list connecting the two means or put the same letter next to each in the range.

Conclude that there are not treatment differences.

3. If the difference is signi�cant, then the test continues. Compare the highest mean to the second lowest

mean and the lowest mean to the second highest mean. If either difference is not signi�cant, draw a line

between the two means or put the same letter next to each in the range.

4. When the difference between two means is declared not signi�cant, then all means between the two

compared are also declared not signi�cant.

5. Continue until all means have been compared directly or shown to be not signi�cantly different within

another comparison.



Study Question 6

Which is a more conservative test?

Turkey's HSD

LSD

 Check



Study Question 7

Are treatments 5 and 6 signi�cantly different?

No

Yes

 Check



Contrasts

Contrasts - Introduction

Contrasts are comparisons among several means.

To this point we have only been comparing pairs of treatment means, but often we need to compare several

means. For example, suppose we have 3 nitrogen fertilizer treatments in a wheat experiment: manure, 25 kg N,

and 50 kg N, the latter two being applied as urea. We would be interested in a comparison or contrast of

average yield of the manure treatment vs. the two chemical fertilizer treatments. We want to test H0: (mean of

treatment 1) = (mean of treatments 2 and 3). Just as with a contrast of two treatment means, we can use a

t-test for testing whether a linear combination of the three treatment means is zero.

We can analyze contrasts with either a t-test (the next slide) or an F-test (described later in this lesson). With

either test, we are comparing the differences between means or groups of means to the residual variation

described by the standard error (in the F-test).



Test Equations

We test the linear combination:

The t-test has form: 

where: 

L = the difference between the means of groups or groups of means

 = the standard error of the contrast

Equation 7

Equation 8



Estimating Variance

The testing of contrasts of several means is somewhat more complicated than testing pairs of means because

we need to estimate the variance of the linear combination, SL
2. For our example,

where:

S2 = residual or error mean square

n1, n2, n3 = numbers of observations in treatments 1, 2, and 3, respectively

Where did the “1” and “-0.5”s come from? By multiplying the corresponding means by these numbers, we

calculate the same value as we did for . In effect, we are �nding the difference

between  and the mean of  and .

Equation 9



Linear Combination and Variance of Linear Contrast

Linear Combination 

A linear combination of the treatment means is:

Variance of the Linear Contrast 

The variance of the linear contrast, each of whose treatments has r replications, is:

where: 

S2 = residual or error mean sequence 

ci = contrast coe�cient for ith treatment mean

r = number of replications 

This formula for the estimated variance of a contrast makes sense because we are comparing t independent

means. They are independent because of randomization in the experimental design. Each mean has an

estimated variance (S2/r). Because the variance of a constant times a variable is the square of the constant

times the variance of the variable, we have ci
2 in the formula. In the simplest case, this reduces to: Sd

2 = (S2/r)

+ (S2/r) for contrasting two treatment means [because ci
2 = (1)2 or (-1)2]. The square root of this is the

standard error for computing the LSD.

Equation 10

Equation 11



Study Question 8

If in our wheat experiment, yields of the 3 treatments, each with 6 reps, are \(\bar{Y}_1\)= 7.0
t/ha, \(\bar {Y}_2\) = 5.7 t/ha and \(\bar{Y}_3\) = 6.4 t/ha, and the error mean square from the
ANOVA is 78, what is SL

2?

1.95

2.60

1.30

 Check



Study Question 9

What is the calculated t-value for the contrast?

2.15

0.49

1.92

 Check



Study Question 10

If in our wheat experiment, yields of the 3 treatments, each with 6 reps, are \(\bar{Y}_1\) = 70
bu/A, \(\bar{Y}_2\) = 57 bu/A and \(\bar{Y}_3\) = 64 bu/A, and the error mean square from the
ANOVA is 78, what is the calculated t-value for the contrast?

If the error df for this experiment is 15, and we conduct our test (two-tailed) at the 0.05 probability
level, what do we conclude?

There is no signi�cant difference in wheat yields fertilized with manure or with urea in this experiment.

Wheat fertilized with manure out-yields the average of wheat fertilized with 60 or 120 lbs/acre of N for

this experiment.


 Check



Testing

The idea of contrasts is a straightforward extension of the idea of comparing two treatment means. In general,

we make the contrast (L) among the treatment means and test the null hypothesis that the mean of the contrast

is zero. If t = L/SL is larger than the critical t-value (for degrees of freedom in S2), we reject the null hypothesis.

With 10 or more error df, the contrast is signi�cant at the 0.05 probability level when L is over about 2 standard

errors (SL) away from zero.

One more point is pertinent: we can also test the contrast with an F-test. Earlier we saw that a two-tailed t-test

with k error degrees of freedom is the same as an F-test with one numerator and k denominator degrees of

freedom because F = t2. F-tests for contrasts are often arranged into an ANOVA table so we can subdivide the

treatment sum of squares into logical single-degree-of-freedom tests. We explore this further in the next

section.



Planned F-Tests

Planned F-Test: Introduction

Contrasts are planned comparisons and can be tested with F-tests. 

Perhaps the most powerful and useful method for comparing means is through contrasts, outlined in the

previous section. They go beyond simple mean comparisons to answering speci�c questions about the

treatment effect. They are especially useful in factorial experiments, where they allow the effect of one factor to

be isolated and studied. In addition, contrasts can be used with quantitative variables (i.e., levels of fertilizer) to

detect trends in the response of the experimental units. We outline in detail in this section how contrasts are

set up, some of their properties, how they �t into an ANOVA table, and how they are tested with F-tests.

The �rst step in designing a contrast is to determine the questions that we desire to answer. This is the beauty

of a contrast — it allows us to cut through all of the numbers and get back to the concepts for which we

conducted the experiment!

For example, what questions would we want to answer with regard to the corn hybrid and population factorial

experiment? Of course, we want to know whether higher plant populations improve corn yield. We also want to

know whether the hybrids produce different yields.



Corn Example

Now let us further de�ne these questions. We begin by specifying the population question. We ask two

questions. First , how does the yield at 12.5 plants/m2 compare to the mean yield of 7.5 and 10.0 plants/m2?

Secondly, does the yield for 7.5 plants/m2 differ from the yield for 10.0 plants/m2?

Among the corn hybrids we could compare the mean yield of hybrid C with the mean yield of hybrids A and B.

We could then compare the yield of hybrid A with that of hybrid B.

These are examples of some of the logical contrasts which a researcher might want to test in his/her

experiment. The contrasts chosen by a researcher will depend on the objectives for each experiment.

Population:

• 5.0 vs. 10.0 plants/m2

• 7.5 and 10.0 vs. 12.5 plants/m2

Hybrid:

• hybrid A vs. hybrid B

• hybrid A and B vs. hybrid C



Assigning Contrast Coefficients 1

Contrast Coe�cients are assigned +1 or -1 to compare equal-sized groups.

The nuts and bolts behind a contrast is the generation of a difference. For example, in comparing the

populations previously, what we are really doing is examining the numerical difference between the mean yield

at 7.5 and 10.0 plants/m2. Therefore, the second step in a contrast is to generate this difference. This is

accomplished by assigning different weights, called coe�cients, to the nine treatment means produced by the

experiment.

To determine the difference in mean yield between corn planted at 7.5 and 10.0 plants/m2, we need to compare

two groups: the three treatment means produced at 7.5 plants/m2 and the three treatment means produced at

10.0 plants/m2. We will assign a coe�cient of +1 to every treatment that is produced at 7.5 plants/m2 and a

coe�cient of -1 to every treatment produced at 10.0 plants/m2. We assign a coe�cient of 0 to every treatment

produced at 12.5 plants/m2, since we are not comparing that population in this contrast. As a reminder, in our

numbering of treatments, the �rst three are 7.5 plants/m2 for hybrids A, B and C, treatments 4 to 6 are 10.0 and

7 to 9 are 12.5. The coe�cients for our contrast of the nine treatments are:

Table 8 Coe�cients for population contrasts. 

Contrast 1 2 3 4 5 6 7 8 9

7.5  vs. 10.0 plants/m2 +1 +1 +1 -1 -1 -1 0 0 0

https://pbea.agron.iastate.edu/coefficient-0
https://pbea.agron.iastate.edu/coefficient-0


Assigning Contrast Coefficients 2

What we are doing, then, is adding up all means produced at 7.5 plants/m2 and then subtracting all means

produced at 10 plants/m2. The result is a difference which we will analyze. You might wonder why we use whole

number coe�cients instead of 1/3 and -1/3 since the contrast of interest is

. It turns out that the F-ratio or t-test is the same whether we use

the fractions or whole numbers, and it is easier to just use whole numbers. However, when calculating the

actual difference being compared, it is important to use the correct fraction. In the example above, leaving out

the denominator would give you the difference in totals rather than the difference in means. We can use totals

to evaluate the signi�cance of the contrast, but we need to use actual means when we estimate a treatment

difference.

To determine the difference in mean yield between hybrid A and hybrid B, we follow the same procedure. We

assign a coe�cient of +1 to every treatment which includes hybrid A, and a coe�cient of -1 to every treatment

which includes hybrid B. We will assign a coe�cient of 0 to every treatment which includes hybrid C, since that

hybrid is not a part of this comparison. We assign the following coe�cients to our nine treatments:

Notice that it is imperative to pay close attention to how treatments are assigned.

Table 9 Coe�cients for variety contrasts. 

Contrast 1 2 3 4 5 6 7 8 9

Hybrid A vs B +1 -1 0 +1 -1 0 +1 -1 0



Assigning Contrast Coefficients - Sums

Contrast coe�cients are assigned weights which sum to zero.

Comparing the yield produced at a population of 12.5 plants/m2 with the mean yield of 7.5 and 10.0 plants/m2

is a little more tricky. Again, we are comparing two groups. This time, however, one of the groups is composed

of two populations — 7.5 and 10.0 plants/m2 — while the other group is composed of only one population —

12.5 plants/m2. This changes the coe�cients which must be assigned.

At �rst, it might appear that we should assign a coe�cient of +1 to all treatments containing 7.5 or 10.0

plants/m2 and a coe�cient of -1 to all treatments containing 12.5 plants/m2. This, however, would be wrong, for

we would be comparing the sum of six treatment means (7.5 and 10.0 plants/m2) with the sum of only three

treatment means (12.5 plants/m2).



Assigning Contrast Coefficients - Weighting

Instead, we assign a coe�cient of +1 to all treatments containing 7.5 or 10.0 plants/m2 and a coe�cient of -2

to all treatments containing 12.5 plants/m2. In doing this, we in effect weight the yields produced with 7.5 and

10.0 plants/m2 before comparing them with the yields produced at 12.5 plants/m2. We assign the following

coe�cients to our nine treatments:

Notice that our contrast coe�cients are balanced in that they sum to zero. This is a characteristic of contrast

coe�cients when treatments are equally replicated. Also notice that they are directly proportional to the

fractional coe�cients (1/6, 1/6, 1/6, 1/6, 1/6, 1/6, -1/3, -1/3, -1/3) which result from the contrast of the (mean

of 7.5 or 10.0 plants/m2) vs. (mean of 12.5 plants/m2).

Table 10 Coe�cients for population contrasts. 

Contrasts 1 2 3 4 5 6 7 8 9

7.5 vs. 10.0 plants/m2 +1 +1 +1 -1 -1 -1 0 0 0

12.5 vs. 7.5 +1 +1 +1 +1 +1 +1 -2 -2 -2



Assigning Contrast Coefficients - Comparison

A good rule of thumb to remember when comparing groups containing different numbers of treatment means is

this: assign each member of the �rst group a coe�cient equal to the number of treatments in the second group.

Then assign each member of the second group the negative value of the number of treatments in the �rst

group.

We treat the comparison of the yield of hybrid C and the mean yield of hybrids A and B in the same way. We

assign a coe�cient of +1 to all treatments containing hybrids A or B and a coe�cient of -2 to all treatments

containing hybrid C.

Table 11 Coe�cients for variety contrasts

Contrast 1 2 3 4 5 6 7 8 9

Hybrid A vs. B +1 -1 0 +1 -1 0 +1 -1 0

Hybrids C vs. A & B +1 +1 -2 +1 +1 -2 +1 +1 -2



Independence of Comparisons

Orthogonal comparisons have the property of independence. 

Two rules must be followed in order for a set of contrasts to be independent of each other. These are for

treatments with equal numbers of reps, which is the usual case when there is no missing data in an experiment.

Rule 1

The sum of the coe�cients in each contrast must equal zero.

Rule 2

The sum of the product of the corresponding coe�cients of any two contrasts must equal zero.

Table 12 Coe�cients for variety contrasts. 

Contrast 1 2 3 4 5 6 7 8 9

Hybrid A vs. B +1 -1 0 +1 -1 0 +1 -1 0

Table 13 Coe�cients for variety contrasts

Contrast 1 2 3 4 5 6 7 8 9

Hybrid A vs. B +1 -1 0 +1 -1 0 +1 -1 0

Hybrids C vs. A & B +1 +1 -2 +1 +1 -2 +1 +1 -2

Product of contrasts +1 -1 0 +1 -1 0 +1 -1 0

https://pbea.agron.iastate.edu/independent-0
https://pbea.agron.iastate.edu/independent-0


Non-orthogonal Contrasts

It is possible and sometimes even desirable to make a set of contrasts that are not orthogonal. The advantage

of using an orthogonal set is that if the sums of squares for each contrast are added together, the sum is equal

to the sum of squares for treatments in the ANOVA. This characteristic can be useful when performing

calculations. It also provides a way to e�ciently use all the information available for treatment comparisons.

Interpretation of a set of contrasts is also more straight forward when they are independent.



Study Question 11

For 4 treatments, are the following pairs orthogonal contrasts? 



Contrast Sums of Squares

Each contrast has a sum of squares in the ANOVA.

Each contrast produces a sum of squares which is calculated using treatment means and coe�cients. The

F-ratio is the square of the calculated t-value L/SL. The formula for contrast sum of squares is

where: 

c = contrast coe�cient 

T = treatment total

r = number of replicates

The contrast SS has 1 df, so the Contrast MS = Contrast SS. Basically, t2 = F (the variance ration). So the square

of t-value you calculated earlier is equal to the Contrast MS/ Residual Mean Square (RMS).

Equation 12



Calculating Contrast SS

The sum of squares for comparison of yields produced at 7.5 and 10.0 plants/m2 is calculated as follows. Of

course, the computer calculates this for you, but it is good to see this calculation to know how much work it

saves you!

ss (7.5 vs. 10.0 plants/m2)



Corn Population Example

The results can be arranged in the same manner as an ANOVA table. The sums of squares for all four contrasts

are therefore:

The sum of squares for error is calculated as in the ANOVA with all treatment sums of squares, not just those

for the 4 contrasts, removed.

Table 14 ANOVA for contrasts. 

Contrast df SS MS F F crit (P =

0.05)

7.5 vs. 10.0

plants/m2

  62.72      

7.5 and 10.0

vs. 12.5

plants/m2

  107.925      

hybrid A vs. B   5.021      

hybrid A and B

vs. C

  1.564      

error   563.611      



Mean Square

Contrasts have 1 df, so contrast MS = contrast SS.

The mean square for each contrast and the error is calculated by dividing the sum of squares by the degrees of

freedom. Each contrast has one degree of freedom. Therefore, the mean square for each contrast is equal to its

sum of squares:

Compare this result with the ANOVA table calculated in R Exercise 1 of the module on Two Factor ANOVAs.

Notice that the contrast df and SS for population and for hybrid sum to those found in the ANOVA table (with

some small rounding errors). There is one portion of the ANOVA from the module on Two Factor ANOVAs

missing though, the interaction between the treatments. Orthogonal contrasts could also be constructed for the

interaction, but we will not do that here.

Table 15 ANOVA for contrasts. 

Contrast df SS MS F F crit (P =

0.05)

7.5 vs. 10.0

plants/m2

1 4.726 4.726    

7.5 and 10.0

vs. 12.5

plants/m2

1 107.925 107.925    

hybrid A vs. B 1 5.021 5.021    

hybrid A and B

vs. C

1 1.564 1.564    

error 18 563.611 31.312    



F-Tests

To calculate the F-value for each contrast, the mean square for each contrast is divided by the mean square

error:

Table 16 ANOVA for contrasts. 

Contrast df SS MS F F crit (P = 0.05)

7.5 vs. 10.0 plants/m2 1 4.726 4.726 0.15  

7.5 and 10.0 vs. 12.5 plants/m2 1 107.925 107.925 3.45  

hybrid A vs. B 1 5.021 5.021 0.16  

hybrid A and B vs. C   1 1.564 1.564 0.05  

error 18 563.611 31.312  



F-Test Critical Value

The contrast for each F-value is then compared with the critical F-value for the desired level of signi�cance (F

with 1 numerator and 18 denominator df).

Table 17 ANOVA for contrasts.

Contrast df SS MS F F crit (P = 0.05)

7.5 vs. 10.0 plants/m2 1 4.726 4.726 0.15 0.70

7.5 and 10.0 vs. 12.5 plants/m2 1 107.925 107.925 3.45 0.08

hybrid A vs. B 1 5.021 5.021 0.16 0.69

hybrid A and B vs. C 1 1.564 1.564 0.05 0.83

error 18 563.611 31.312  



Study Question 12

Which interperetation of results is correct for this experiment (at 0.05 signi�cance)?

Contrast df SS MS F F crit (P =
0.05)

7.5 vs. 10.0 plants/m2 1 4.726 4.726 0.15 0.70

7.5 and 10.0 vs. 12.5 plants
m2

1 107.925 107.925 3.45 0.08

hybrid A vs. B 1 5.021 5.021 0.16 0.69

hybrid A vs. B 1 1.564 1.564 0.05 0.83

error 18 563.611 31.312    

Plant population has no statistically signi�cant effect on yields.

Hybrid has no effect on yield.

Hybrid A and B yields are signi�cantly different.

50,000 plants/acre is a preferable planting rate.

 Check



Exercise 2

Ex.2: Calculating Contrasts

Notes To Instructors

This lesson will focus on the calculating of contrasts using the R software, it is assumed that we already how to

calculate contrast coe�cients in order to make speci�c comparisons. A brief overview of how to assign

contrast coe�cients can be found in the supplementary materials at the end of the activity.

Ex. 2: Getting Ready

R Code Functions

• read.csv()

• as.factor()

• list()

• aov()

• matrix()

• split()

• summary()

• contrasts()

• interaction()

The Premise

The previous LSD and HSD test indicate that the means of Population are not signi�cantly different. However,

the LSD test shows the average yield of Hybrid A and B is different than that of Hybrid C. If we want to further to

explore speci�c means or group of means comparisons for variables Population and Hybrid, contrast is the best

way to do this. So continuing from the same experiment of planting 3 hybrids at 3 planting densities, you now

wish to make speci�c comparisons between hybrids and comparisons between populations.

Activity Objectives

Use R to calculate speci�c contrasts that you choose to run.

Ex. 2: Read Data

Suppose we want to create two contrasts for main effect of Population, we named:

• C1: compare the yields of two populations 7.5 and 10 plants/m2,



• C2: compare the yield produced at a population of 12 plants/m2 with the mean yield of populations 7.5

and 10 plants/m2

If you have picked up from the previous activity, you will not need to run the ANOVA again, but if you are starting

fresh with this assignment, use the following code to read in the data set and run the two-factor ANOVA. Be

sure to have Population as a factor in R before you run your analysis or you will not have the appropriate number

of degrees of freedom for Population.

corn<-read.csv(”exercise.10.2.data.csv”,header=T)

Ex. 2: Contrast Coefficients

corn$Population <- as. factor(corn$Population)

Population <- corn$Population

cornaov<- aov(Yield ~ Population*Hybrid, data=corn)

Summary(cornaov)

                         Df  Sum Sq  Mean Sq  F value  Pr(>F)

Population                2    9.18    4.588    2.114  0.1498

Hybrid                    2   12.18    6.342    2.922  0.0796

Population:Hybrid         4   29.30    7.325    3.375  0.0316

Residuals                18   39.07    2.170 

---

Signif. codes:  0 '***'  0.001 '**'  0.01 '*'  0.05 '.'  0.1 ' ' 1

Next, make a matrix with the two sets of contrast coe�cients. Then set the “contrasts” attribute of factor

Population. For more information on how to calculate the contrast coe�cients, see the supplementary

materials for this activity. The following code will spell out the desired contrast and calculate it for us.

contrasts(corn$Population) <- matrix(c(1,-1,0,-1,-1,2), nrow = 3)

contrasts(corn$Population)



   [,1] [,2]

30    1   -1

40   -1   -1

50    0    2

Ex. 2: Contrast Coefficients - Output

In the output, we have generated a matrix of contrast coe�cients comparing 7.5 plants /m2 to 10 plants/m2 in

column 1 and the mean of 7.5 and 10 compared to 12.5 plants/m2 in column 2. Remember, always double

check that your contrasts (columns here) add up to 0! Next, we run the ANOVA again and this time we use the

‘split’ and ‘list’ function to add the contrasts we are interested in to the ANOVA. 

Pop.model <- aov(Yield ~ Population*Hybrid, data = corn)

summary.aov(Pop.model, split = list(Population = list(”7.5 vs 10” = 1, “12.5 vs 7.5+10” =2)))

                                      Df Sum Sq Mean Sq F value  Pr(>F)

Population                             2   9.18   4.588   2.114 0.14975

Population: 7.5 vs 10                  1   0.24   0.238   0.110 0.74434

Population: 12.5 vs 7.5+10             1   8.94   8.939   4.118 0.05748 .

Hybrid                                 2  12.68   6.342   2.922 0.07962 .

Population:Hybrid                      4  29.30   7.325   3.375 0.03156 *

Population:Hybrid: 7.5 vs 10           2   3.04   1.521   0.701 0.50931

Population:Hybrid: 12.5 vs 7.5+10      2  26.26  13.130   6.049 0.00978 **

Residuals                             18  39.07   2.170

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results show that the both contrasts “7.5 vs 10” and “12.5 vs 7.5 + 10” on the main effect of Population are

not signi�cant with P = 0.7444 and P = 0.057, respectively. And also that the second contrast on Population has

a signi�cant interaction with Hybrid, F(1,18) = 6.409, P = 0.01.

Ex. 2: Contrasts for Hybrid Effect

Let’s switch to construct contrasts for main effect of Hybrid. Similarly, we named,

• C3: compare the mean yield between hybrid A and hybrid B,

• C4: compare the yield of hybrid C and the mean yield of hybrids A and B.

The R code for calculating above two contrasts would be the same as the ones of Population. 



contrasts(corn$Hybrid) <- matrix(c(1,-1,0,-1,-1,2), nrow = 3)

contrasts(corn$Hybrid)

  [,1] [,2]

A    1   -1

B   -1   -1

C    0    2

Hybrid.model <- aov(Yield ~ Population*Hybrid, data = corn)

summary.aov(Hybrid.model, split = list(Hybrid = list(”A vs B” = 1, “C vs A+B” = 2)))

                                      Df Sum Sq Mean Sq F value Pr(>F)

Population                             2   9.18   4.588   2.114 0.1498

Hybrid                                 2  12.68   6.342   2.922 0.0796 .

  Hybrid: A vs B                       1   1.00    0.999   0.460 0.5062

  Hybrid: C vs A+B                     1  11.69  11.685   5.384 0.0323 *

Population:Hybrid                      4  29.30   7.325   3.375 0.0316 *

  Population:Hybrid: A vs B            2  13.53   6.765   3.117 0.0688 .

  Population:Hybrid: C vs A+B          2  15.77   7.886   3.633 0.0473 *

Redsiduals                            18  39.07   2.170

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Ex. 2: Interaction

We can see that the yield of Hybrid A is not different from that of Hybrid B with P = 0.5062. However, the

average yield of Hybrid A and B is different than that of Hybrid C with P = 0.0323. Now we know that if say,

Hybrid C was a standard check variety, it would be different than the other two varieties in your trial, but Hybrid

A and Hybrid B are not really different in terms of yield. You’ll want to take information like this into

consideration if you are trying to decide which Hybrids to keep in your breeding program.

Let’s say we think that a particular hybrid is affected by Population because we saw evidence of it in the ANOVA

or the interaction plot. In this example, we can see that Hybrid C is affected by Population. To �gure out which

Populations differ in yield when growing Hybrid C, we need to make two contrasts: 7.5 vs. 10 and 10 vs. 12.5.

To do this in R, we �rst have to compute a factor which represents the interaction of Population and Hybrid.

We named the new interaction factor as “P.H”, which has 9 levels, ordered from 7.5.A to 12.5.C.



corn$P.H <- interaction(corn$Population, corn$Hybrid)

corn$P.H

 [1] 7.5.A 7.5.A 7.5.A  7.5.B  7.5.B  7.5.B  7.5.C  7.5.C  7.5.C  10.A   10.A   10.A   10.B   10.B   10.B   10.C 

[17] 10.C  10.C  12.5.A 12.5.A 12.5.A 12.5.B 12.5.B 12.5.B 12.5.C 12.5.C 12.5.C

Levels: 7.5.A 10.A 12.5.A 7.5.B 10.B 12.5.B 7.5.C 10.C 12.5.C

Ex. 2: Compare Yield - 7.5 vs 10

Next we set the contrast coe�cients to compare the yield difference between 7.5 and 10 for Hybrid C. 

contrasts(corn$P.H) <- c(0,0,0,0,0,0,1,-1,0)

contrasts(corn$P.H)

       [,1]        [,2]        [,3]        [,4]        [,5]        [,6]       [,7]        [,8]

7.5.A     0 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.09763107 -0.5690356 -0.33333333

10.A      0 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.73151455 -0.5648479 -0.08333333

12.5.A    0  0.91666667 -0.08333333 -0.08333333 -0.08333333 -0.02440777 -0.1422589 -0.08333333

7.5.B     0 -0.08333333  0.91666667 -0.08333333 -0.08333333 -0.02440777 -0.1422589 -0.08333333

10.B      0 -0.08333333 -0.08333333  0.91666667 -0.08333333 -0.02440777 -0.1422589 -0.08333333

12.5.B    0 -0.08333333 -0.08333333 -0.08333333  0.91666667 -0.02440777 -0.1422589 -0.08333333

7.5.C     0 -0.08333333 -0.08333333 -0.08333333 -0.08333333  0.47559223  0.3577411 -0.08333333

10.C      1 -0.08333333 -0.08333333 -0.08333333 -0.08333333  0.47559223  0.3577411 -0.08333333

12.5.C   -1 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.02440777 -0.1422589  0.91666667

The contrasts get stored as attributes of the factor P.H. So when we run a new ANOVA they will get applied

automatically. The contrast matrix has eight sets of contrasts. We are only interested in the �rst one and ignore

the rest of them. Therefore, the argument of list is “label of contrast = 1”. 

Interaction.model <- aov(Yield ~ P.H, data = corn)

summary.aov(Interaction.model, split = list(P.H = list(”7.5 vs 10, Hybrid C” = 1)))

                              DF   Sum Sq  Mean Sq F value   Pr(>F)

P.H                            8    51.16    6.395   2.946   0.0271

P.H: 7.5 vs 10, Hybrid C  1   1.53  1.530    0.705  0.4121

Residuals                     18    39.07    2.170

---



Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Ex. 2: Compare Yield - 10 vs 12.5

The same R code can be applied for calculating the contrast 10 vs. 12.5 except changing the contrast

coe�cients of factor P.H and the label in list. 

contrasts(corn$P.H) <- c(0,0,0,0,0,0,1,-1,0)

contrasts(corn$P.H)

       [,1]        [,2]        [,3]        [,4]        [,5]        [,6]        [,7]       [,8]

7.5.A     0 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.09763107 -0.5690356

10.A      0 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.73151455 -0.5648479

12.5.A    0  0.91666667 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.02440777 -0.1422589

7.5.B     0 -0.08333333  0.91666667 -0.08333333 -0.08333333 -0.08333333 -0.02440777 -0.1422589

10.B      0 -0.08333333 -0.08333333  0.91666667 -0.08333333 -0.08333333 -0.02440777 -0.1422589

12.5.B    0 -0.08333333 -0.08333333 -0.08333333  0.91666667 -0.08333333 -0.02440777 -0.1422589

7.5.C     0 -0.08333333 -0.08333333 -0.08333333 -0.08333333  0.91666667 -0.02440777 -0.1422589

10.C      1 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.08333333  0.47559223  0.3577411

12.5.C   -1 -0.08333333 -0.08333333 -0.08333333 -0.08333333 -0.08333333  0.47559223  0.3577411

Interaction.model <- aov(Yield ~ P.H, data = corn)

summary.aov(Interaction.model, split = list(P.H = list(”7.5 vs 10, Hybrid C” = 1)))

                           DF Sum Sq Mean Sq F value Pr(>F)

P.H                         8  51.16   6.395   2.946 0.0271

  P.H: 7.5 vs 10, Hybrid C  1   1.53   1.530   0.705 0.4121

Residuals                  18  39.07   2.170

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results of the two contrasts show that the yields of Hybrid C are the same for the 7.5 and 10 populations

with F(1, 18) = 0.705, P = 0.4121 and differ from the yield at the 12.5 population with F(1, 18) = 10.602, P =

0.0044. Therefore it is reasonable to assume that Hybrid C is impacted by a higher planting density than the

other two Hybrids.

Ex. 2: Review



Review Questions 

• What have we learned from this lesson?

• How do LSDs and HSDs help make selection decisions?

Ex. 2: Supplement - Decide Comparison(s)

When assigning contrast coe�cients you �rst need to decide what comparison(s) you wish to make. In the

activity example, we compare planting densities of 7.5 and 10 plants/m2 and we make another comparison of

12.5 plants/m2 verses the mean of 7.5 and 10 plants/m2. For this �rst comparison, we will assign a coe�cient

of +1 to every treatment of 7.5 and -1 for every treatment of 10. The treatments of 12.5 are not included in this

comparison, so every treatment with 12.5 will have a coe�cient of 0.

Table 18

R Code Glossary

read.csv("") Read in a .csv �le. Remember to include if it has a header or not. 

aov(y ~ A + B + A:B,

data=mydataframe)

Perform a 2-factor analysis of variance on an R object. Can also

write as aov (y~A*B, data = mydataframe). 

summary() Returns the summary of an analysis

as.factor(mydataframe$variable) Changes a variable within an R object to a factor variable. An

example is when you have variables designated with numbers buy

they are meant to be categorical variables designated with

numbers buy they are meant to be categorical variables so you

use this function to tell R that.

matrix(,nrow=) Creates a matrix of a given size. You can specify a vector you

already have or enter your own. 

contrasts(x) Sets contrasts matrix, x is a factor. In this activity we specify a

factor within a data frame ex: (corn$Population).

list() A generic vector containing other objects.

split() Splits a character vector. 

interaction(...) Computes a factor representing the interaction of the given

factors. 



So what are the treatments? If you go back to the data sheet you will see that there is a column labeled

‘treatment’ and it lists treatments 1-9. Each treatment represents each Hybrid and Population combination and

each treatment is listed 3 times for the 3 replications. If you have to come up with your own contrast

coe�cients it is a good idea to clearly label your treatments for easy reference when assigning coe�cients.

Ex. 2: Supplement - Assign Coefficients

Now that we have de�ned the comparisons and labeled our treatments, it is time to assign the coe�cients. For

7.5 vs. 10 plants/m2 we assign a +1 for each treatment of 7.5 plants and -1 for each assignment of 10 plants.

Remember, 12.5 is not included in this comparison so any 12.5 plant treatments are given a 0. What is

happening here is we are subtracting the mean of the 10 plants/m2 from the mean of the 7.5 plants per acre

and we will analyze the difference between the two for this contrast. You could use a coe�cient of +1/3 instead

of +1 since you have 3 treatments and while the F-test will turn out the same you would have to use the correct

fraction to get the correct answer. This can be tricky with more complicated contrasts so you may just want to

stick to whole numbers for your coe�cients. 

Fig. 2



Following this same procedure, we can compare 12.5 plants/m2 to the mean of 7.5 and 10 plants/m2. This time

we do not assign a coe�cient of -1 to 7.5 and 10 and +1 to 12.5 because then we would be comparing the sum

of 6 treatment means to only 3 treatment means. To deal with this we weight the means by assigning -1 to 7.5

and 10 and +2 to 12.5 plants/m2 to make this an even comparison.

You can use the same procedure to design any comparison that you wish to make.

Table 19

Treatment # 1 2 3 4 5 6 7 8 9

Contrast 7.5 vs. 10.0 +1 +1 +1 -1 -1 -1 0 0 0

Table 20

Treatment # 1 2 3 4 5 6 7 8 9

Contrast 7.5 vs. 10.0 +1 +1 +1 -1 -1 -1 0 0 0

7.5 and 10 vs. 12.5 +1 +1 +1 -1 -1 -1 2 2 2



Trend Comparisons

Trend Comparisons - Description

Trend comparisons are contrasts among quantitative treatments. 

The contrasts performed so far in this lesson have been class comparisons — they determine differences

between different qualitative traits or levels of treatments. Class comparisons are by themselves adequate

when we are working with qualitative data. For example, we would use qualitative comparisons when comparing

different tillage implements or different kinds of fertilizer. The qualitative comparison is also appropriate for

comparing corn hybrids, as we just did.

When we are working with quantitative data, however, we should not be content with class comparisons alone!

For example, when comparing different rates of fertilizer, we want to know how the crop responds to extra

fertilizer:

• Does the crop respond positively to every additional increment of fertilizer?

• Is there an optimum amount of fertilizer beyond which the crop actually responds negatively?

• If we can answer these questions, then we vastly expand our understanding of the yield response to

applied fertilizer.

Whereas the class comparisons are useful when looking at discrete variables, the trend comparison can

indicate responses of continuous variables. For instance, we found the response at 0, 25, and 50 kg/ha.

• What would happen if there were 35 kg N?

https://pbea.agron.iastate.edu/class-comparisons
https://pbea.agron.iastate.edu/class-comparisons


Linear Trend

A linear trend contrast is a comparison of high population with low

The response of corn yield to increasing population can be described using trend comparisons. Yield may

increase with every increase in population (Fig. 3). The numbers along the left axis correspond to the

coe�cients that would be assigned to each population in a trend comparison.

In this case, the contrast is comparing the difference between the highest and lowest populations, assuming a

straight line between them. This is known as a linear trend.

Fig. 3



Quadratic Trend

A quadratic trend comparison tests for curvature

Alternately, corn yield may increase with population up to 10.0 plants/m2, but then decrease when the

population is increased to 12.5 plants/m2. Corn is particularly sensitive to available sunlight — a population

which is too high will cause excessive shading and barrenness. This response trend is illustrated by the

parabolic response curve (Fig. 4). 

In this case, the contrast compares the middle plant population to the sum of the high and low population to

determine whether there is a signi�cant peak in yield. In other words, we are determining whether the

population is optimal at 10.0.

Fig. 4 Quadratic trend of yield with increasing population.



Contrast Weights

Contrasts can be used to ascertain the order or the equation that best describes the relationship between a

dependent variable such as yield and a quantitative variable such as population. You can use orthogonal

polynomial contrasts for quantitative variables for polynomial models up to t - 1 terms; i.e. the maximum order

you can explore with the contrasts is one less than the total number of levels for the quantitative treatment. In

our example, we are constrained to and really only interested in computing linear (1st order) and quadratic (2nd

order) contrasts. These will tell us if the response is a straight line or has some curvature (i.e. nonlinear).

The coe�cients to be used with each comparison are shown (Table 21). In the case of both the linear and

quadratic trend, these coe�cients will test either an increasing or a decreasing trend. In other words, if yield

decreased with population, or was actually lowest at 10 plants/m2, the coe�cients below would detect those

trends as well.

Coe�cients similar to these can be created for cubic, quartic, etc. trends if there are more plant population

treatments. Tabulations of coe�cients for different levels of treatments can be found under the Orthogonal tab

in the Statistical Tables workbook.

Table 21 Coe�cient for population trend comparisons. 

Contrast1 2 3 4 5 6 7 8 9

Linear -1 -1 -1 0 0 0 +1 +1 +1

Quadratic-1 -1 -1 2 2 2 -1 -1 -1

https://pbea.agron.iastate.edu/files/statisticaltablesxls
https://pbea.agron.iastate.edu/files/statisticaltablesxls


Data Analysis

The two comparisons of the corn population experiment are tested using the same procedure as for class

comparisons. The sums of squares and mean square for each comparison is calculated, and then the mean

square for each comparison is subjected to the F-test. The results are shown in Table 5:

Viewing the data in Fig. 5 helps to explain why the linear and quadratic trends didn't show signi�cance here.

There are hints of both types of trend (linear and quadratic) for each population, but no clear trend for all

hybrids is obvious.

Hybrids B and C show an optimal population at 10.0, while hybrid A actually performed worst at 10.0. This

discussion on linear and quadratic contrasts for trend analysis completes our study of contrasts as mean

separation techniques.

Table 22

Contrast df SS MS F F crit (p =

0.05)

linear 1 4.726 39.15 1.25 4.41

quadratic 1 107.925 37.5015 1.20  

error 18 563.611 31.312    



Fig. 5 Yield trends for the three hybrids plotted as a function of population.



Summary

Comparing Means

• LSD for adjacent pairs or comparison with check cultivar

• HSD for better Type I Error control

• Multiple range tests also protect better than LSD

LSD

• Equals t standard errors of a difference

• Is the most commonly used method for comparing means

Contrasts

• Are planned comparisons

• Tested with t-test or F-test

• LSD is the simplest case

• Coe�cients sum to zero if equal replication

Orthogonal Contrasts

• Independent comparisons

• Partition the treatment sum of squares

Trend Analysis

• Can be done with contrasts

• Useful for quantitative data

• Provides response curve

• Will be done with regression in this module and the one on Randomized Complete Block Design

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/many-approaches
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/many-approaches
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/many-approaches
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/definition-1
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/definition-1
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/definition-1
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mean-comparisons/contrasts-introduction
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Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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