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Introduction

The main objective of plant breeding is to develop new cultivars that are genetically superior to those presently

available across a range of environmental conditions. However, to a large extent, conventional breeding relies

heavily on phenotypic selection and the skill of the breeder. Increasing production of genomic data and better

methods to phenotype plants provide an opportunity to evaluate important traits in plants. Computer simulation

can help to utilize the large and diverse pool of genetic data to build appropriate models to predict the

performance of testcrosses based on pre-existing information, and to compare different and establish optimal

selection methods in plant breeding. In this module, computer simulation tools available to plant breeders and

geneticists will be introduced. This module will include examples of computer simulation for crop genetic

improvement. In the last part of this module, you will learn how to conduct a simple simulation study. 

Objectives

• Familiarize with genetic simulation tools

• Familiarize with simulation modeling

• Learn to design simulation experiments for plant breeding

Fig. 1 A �eld test plot in Uganda. Photo by Iowa State University. 



Genetic Simulation Tools

Methods and Processes

Natural or arti�cial methods and processes are modeled for purposes of predicting unknown outcomes. In plant

breeding, simulation models are used to choose among proposed breeding methods because experimental

evaluation of breeding methods is time and resource limited. Modern computers are designed to possess

greater computational power and data storage space at a reduced price. With the recent explosion in

production of genomic data, custom designed programs will provide opportunity for data analysis and

simulation to improve plant breeding methods. Examples of publicly available simulation software for plant

breeding, software functionality, and assumptions made in modeling are summarized in the next pages.

A. Plabsoft

Plabsoft is a computer program used to analyze data and build simulations based on various mating systems

and selection strategies. Plabsoft uses the following model:

where: 

G = genotypic value

Xs = genetic haplotype effect at a subset of loci S

N = loci set

An article describing how population simulation and data analysis can be conducted using Plabsoft is found

here: http://link.springer.com/content/pdf/10.1007%2Fs10681-007-9493-4

http://download.springer.com/static/pdf/338/art%253A10.1007%252Fs10681-007-9493-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10681-007-9493-4&token2=exp=1461354461~acl=%2Fstatic%2Fpdf%2F338%2Fart%25253A10.1007%25252Fs10681-007-9493-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10681-007-9493-4*~hmac=4ad7154911614c78a345b97ed9b4b37a3071a9481fc8ea5528d59a1f386586de
http://download.springer.com/static/pdf/338/art%253A10.1007%252Fs10681-007-9493-4.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10681-007-9493-4&token2=exp=1461354461~acl=%2Fstatic%2Fpdf%2F338%2Fart%25253A10.1007%25252Fs10681-007-9493-4.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs10681-007-9493-4*~hmac=4ad7154911614c78a345b97ed9b4b37a3071a9481fc8ea5528d59a1f386586de


QU-GENE

B. QU-GENE

QU-GENE is used to estimate epistatic and G x E effects using the E(N:K) genetic model.

Where:

E = the number of types of environments

N = the number of genes

K = level of epistasis.

Parentheses in the model indicate that different N:K genetic models can be “nested” within types of

environments.

More information on the QU-GENE platform is found here: http://bioinformatics.oxfordjournals.org/content

/14/7/632.long

The following link contains information on use of computer clusters for large QU-GENE simulations:

http://bioinformatics.oxfordjournals.org/content/17/2/194.long

http://bioinformatics.oxfordjournals.org/content/14/7/632.long
http://bioinformatics.oxfordjournals.org/content/14/7/632.long
http://bioinformatics.oxfordjournals.org/content/14/7/632.long
http://bioinformatics.oxfordjournals.org/content/14/7/632.long
http://bioinformatics.oxfordjournals.org/content/17/2/194.long
http://bioinformatics.oxfordjournals.org/content/17/2/194.long


MBP

C. MBP

MBP is used for optimizing resource allocation to maximize genetic gain in breeding of hybrid maize using

doubled haploid techniques. MBP uses the following model: 

where: 

 = estimated genetic variance between test cross progenies

 = derivatives of additive and dominance variance estimates 

T = the number of testers

Read more about MBP software here: http://jhered.oxfordjournals.org/content/99/2/227.full.pdf+html

Equation 1

http://jhered.oxfordjournals.org/content/99/2/227.full.pdf+html
http://jhered.oxfordjournals.org/content/99/2/227.full.pdf+html


GREGOR, PLABSIM and GENEFLOW

D. GREGOR

GREGOR is used to predict the mean result of mating and selection in plant breeding. GREGOR is implemented

in the MS-DOS environment and does not require use of empirical data. All inputs including individual, trait, and

marker data are simulated by the program. GREGOR can create �les that are compatible

for Mapmaker/Mapmaker QTL programs. http://jhered.oxfordjournals.org/content/84/3/237.extract

E. PLABSIM

PLABSIM is used for simulation of marker-assisted backcross methods. http://jhered.oxfordjournals.org

/content/91/1/86.long

F. GENEFLOW

GENEFLOW provides a platform for determining the nature and structure of genetic diversity by integrating

pedigree, genotype, and phenotype data. Simple statistical analyses, such as ANOVA, regression, t tests

and correlations are supported in GENEFLOW.

Go to this link to access GENEFLOW: http://www.gene�owinc.com

http://jhered.oxfordjournals.org/content/84/3/237.extract%20
http://jhered.oxfordjournals.org/content/84/3/237.extract%20
http://jhered.oxfordjournals.org/content/91/1/86.long
http://jhered.oxfordjournals.org/content/91/1/86.long
http://jhered.oxfordjournals.org/content/91/1/86.long
http://jhered.oxfordjournals.org/content/91/1/86.long
http://www.geneflowinc.com/
http://www.geneflowinc.com/


COGENFITO

G. COGENFITO

The composite genotype �nder tool (COGENFITO) is a web-based program used as a search tool for

identi�cation of speci�c genotypes (Fig. 2). 

Fig. 2 COGENFITO is available through MaizeGBD at http://archive.maizegdb.org/Cogen�to.php. 

http://archive.maizegdb.org/Cogenfito.php
http://archive.maizegdb.org/Cogenfito.php


Summary of Programs and Functionality

Summary of Functionality and Assumptions of Computer Software
Programs

Software: Plabsoft

• Assumptions: Absence of selection in the base population; random mating; in�nite population size; no

crossover interference

• Models: Quantitative genetic model; count location model

• Functionality: Integrates population genetic analyses and quantitative genetic models for estimating

genetic diversity; tests HWE and calculates LD; haplotype-block-�nding algorithms to predict hybrid

performance

Software: QU-GENE/QuLine

• Assumptions: No mutation; no crossover interference; all random terms normally distributed

• Models: E(NK) model; In�nitesimal model

• Functionality: Employs simple to complex genetic models to mimic inbred breeding programs, including

conventional selection and MAS

Software: MBP

• Assumptions: Timely staggered breeding cycles; no epistatic and maternal effects; no correlated

response in test cross performance; in�nite population size to calculate selection intensity

• Models: Quantitative genetic model for optimization; In�nitesimal model

• Functionality: Optimizes hybrid maize breeding schemes based on DH lines and maximizes the expected

genetic gain per year by means of quantitative genetic model calculations under the restriction of a given

annual budget

Software: GREGOR

• Assumptions: No crossover interference; no epistatic effect

• Models: Quantitative genetic model

• Functionality: Predicts the average outcome of mating or selection under speci�c assumptions about

gene action, linkage, or allele frequency

Software: PLABISM

• Assumptions: No crossover interference

• Models: Random-walk algorithm to simulate crossovers during meiosis



• Functionality: Simulates marker-assisted introgression of one or two target genes using backcrossing

Software: GENEFLOW

• Assumptions: Diploid inheritance

• Models: Genotype; Pedigree; Population and Report modules; optional Multiplex and Germplasm

• Functionality: Studies nature and structure of genetic diversity

Software: COGENFITO

• Assumptions: Maize only

• Models: Security modules, Genome model limited to marker maps in MaizeGDB

• Functionality: Screens marker data from a given genetic mapping population to identify line with user-

de�ned informative haplotypes



Applying Computer Simulation

Computer Simulations

Computer simulations were used as early as 1957 to solve theoretical problems in population genetics that are

intractable using conventional algebraic and statistical approaches (Fraser and Burnell, 1970). Substantial time

and �eld resources are needed to conduct �eld experiments to compare breeding e�ciency from different

selection strategies to predict cross performance using available gene information. The power of computer

simulation is the ability to sample as many conditions as possible beyond the breeder’s capability of solving

them by hand. Taking advantage of the speed and e�ciency of sampling by computers, breeders have found a

tool that can be used to test models and provide more con�dence in the performance of the model in the �eld

environment. The major applications of computer simulation in crop genetic improvement are indicated in Fig.

3. 

Fig. 3 Applications of computer simulation in crop genetic improvement. Adapted from Li et al., 2012.



Example 1: Evaluating Plant Breeding Strategy

Examples of Application of Computer Simulation in Plant Breeding

Example 1: Evaluating plant breeding strategies

Chapman et al. (2003) simulated the S1 recurrent selection method for sorghum in three drought environment

types in Australia. The assumption was that 15 genes in�uence yield in sorghum by controlling several traits

including, transpiration e�ciency coe�cient, �owering time, osmotic adjustment, and stay green traits

(Chapman et al. 2003). In this work, QU-GENE was linked with Agricultural Production Systems sIMulator

(APSIM) program (Fig. 4) to simulate breeding population and the corresponding trait values for each genotype.

As mentioned earlier, QU-GENE helps determine gene effects, G x E interactions, and epistasis (Podlich and

Cooper, 1998). Therefore, combining QU-GENE with APSIM helps determine the importance of the interactions

detected by QU-GENE on yield in target environments.

Fig. 4 Linkages between QU-GENE and APSIM for simulation of S1 recurrent selection of sorghum for adaption to drought

conditions. Gene information and expression states in target population environments (TPE) are entered in QU-GENE to

simulate breeding population and trait values. Trait values are entered into APSIM to predict yield value in TPE. ETs =

drought environment types encountered in the target population environments (TPE). MET = multienvironment trial.

Adapted from Chapman et al., 2003. 



Findings

The data in Fig. 5 suggest that for different combinations of traits being tested in particular environments, the

�xation of certain traits may not occur until one or more other traits have been improved. While in Fig. 5a the

rate of gene �xation is similar, in Fig. 5b, the genes are �xed at different rates. To the breeder, it is important to

�x all desirable alleles at the same rate so that desirable level of homozygosity is attained in earlier generations

(See the Crop Genetics module on Population Genetics).

The work by Chapman et al. (2003) can be found here: https://www.crops.org/publications/aj/abstracts

/95/1/99

Fig. 5 The rate of �xation of additive alleles for (a) a 15-gene additive model generated by QU-GENE and (b) the 15

additive gene and APSIM model for transpiration e�ciency coe�cient (TE), �owering time (PH), osmotic adjustment (OA)

and stay green (SG) in target population environments (TPE). Adapted from Chapman et al., 2003.

https://dl.sciencesocieties.org/publications/aj/abstracts/95/1/99
https://dl.sciencesocieties.org/publications/aj/abstracts/95/1/99
https://dl.sciencesocieties.org/publications/aj/abstracts/95/1/99
https://dl.sciencesocieties.org/publications/aj/abstracts/95/1/99


Example 2: Efficiency of Marker-Assisted Selection

Example 2: To study the e�ciency of marker-assisted selection 

Hospital et al. (1997) investigated the relative e�ciency (RE) of marker-assisted selection (MAS) based on an

index consisting phenotypic value and molecular score of individuals (Cluster Analysis, Association & QTL

Mapping). In this example, the phenotypic value of (Pi) of individual i was computed as the sum of

its genotypic (Gi) and environmental (Ei) values:

One of the assumptions is that the environmental value is a random normal variable with mean 0 and variance

σ2
E. The genetic value was computed as:

Where:

Xq = effect of QTL q

Ɵiq = the number of favorable alleles carried by individual i at locus q

nq = total number of QTL (for this study 25 QTLs were considered)

https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/cluster-analysis-association-qtl-mapping/introduction?cover=1
https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/cluster-analysis-association-qtl-mapping/introduction?cover=1
https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/cluster-analysis-association-qtl-mapping/introduction?cover=1
https://pbea.agron.iastate.edu/course-materials/molecular-plant-breeding/cluster-analysis-association-qtl-mapping/introduction?cover=1


Finding 1

1. The genetic variances at the QTL in the original F2 follow a geometric series

2. There is no genetic interference in recombination

Findings

1. The relative e�ciency of MAS depends on population size (Fig. 6). At low heritabilities, the larger the

population size, the higher the RE of MAS.

Fig. 6 Relative e�ciency of MAS in the �rst generation. RE is indicated in the y-axis at a different heritability values in the

x-axis. Simulations were performed for three population sizes (N), and three signi�cance levels (sle and sls) for each

heritability value. Each data point is on average over 300 replicates for N = 1000 and N = 500, and over 1000 replicates for

N = 200 Adapted from hospital et al., 1997. 



Finding 2

2. MAS is less e�cient than phenotypic selection in the long term (Fig. 7).

The work by Hospital et al. (1997) can be found here: https://link.springer.com/article

/10.1007%2Fs001220050679?LI=true#

Fig. 7 Responses to phenotypic and MAS over several successive generations. I = marker-phenotype index, and P =

phenotypic selection. Horizontal line at y-value 5.82 shows the maximum possible genetic gain for given QTL effects.

Adapted from Hospital et al., 1997. 

https://link.springer.com/article/10.1007%2Fs001220050679?LI=true#
https://link.springer.com/article/10.1007%2Fs001220050679?LI=true#
https://link.springer.com/article/10.1007%2Fs001220050679?LI=true#
https://link.springer.com/article/10.1007%2Fs001220050679?LI=true#


How to Design a Simulation Experiment

New Breeding Methods

The future success of plant breeders will depend upon their abilities to propose and evaluate new breeding

methods. The motivation to succeed will rely on the breeder’s ability to predict cross performance by developing

and validating new statistical methods, and evaluating new breeding processes. This will require application of

models to simulate the methods or processes, and to evaluate the methods based on appropriate criteria, for

example, accuracy, power, precision, e�cacy, and e�ciency (e.g., genetic gain).

Models are used to represent, describe and quantify natural phenomena, and can be arbitrarily simple

depending upon their purpose. For example, consider two cultivars (1 and 2) of a crop species. Our task is to (a)

describe how the two cultivars might be the same and/or different, and (b) how to test whether the

two cultivars are the same. The following statistical model can be used to compare quantitative differences

(e.g., yield) of the two cultivars (Table 1). 

where: 

Yij = observation for the ith cultivar entry at the jth location 

 = an overall mean

Ci =an effect due to the ith cultivar entry 

(i)j = a random error associated with the response of ith cultivar entry at the jth location

i = 1

j = 1

Table 1 Observed yield data for cultivars 1 and 2. 

Cultivar 1 2 3 4 5 Total Mean

1 19 14 15 17 20 85 17

2 23 19 19 21 18 100 20

          185 18.5



Assumptions of the Model

Assumptions of the model

1. Effects are additive

2. Errors are normally distributed, homogeneous, and independent

In a �eld experiment it would be possible, as a result of randomization for all the plots with one of the cultivars

to be grouped together in one corner of the experimental plot (Fig. 8). With spatial variability in soil fertility and

moisture content possible this might lead to misleading results.

One of the remedies to address such spatial field variability (Fig. 8) is to group the units (blocks) such that

units in the same group are as similar as possible, and then allocate at random each cultivar to one unit each of

the groups (Fig. 9).

Fig. 8 A soil map describing variability in soil fertility across the test �eld. Cultivars 1 and 2 are grown in six replications

overlaying opposite sides of the �eld. 



New Field Experiment Design

The new design (Fig. 9) allows the application of the following model: 

where:

Yijk = observation for the kth replicate of the jth block of the ith cultivar

 = an overall mean

Ci = an effect due to the ith cultivar entry

(ij)k = a random error associated with the response of the kth replicate of the ith cultivar in the jth block

Bj = an effect due to the jth block 

k = 1 

Fig. 9 Possible forms of grouping of plots for cultivar �eld trials. 



Simulate a Double Haploid Population

An Example for Simulating a Double Haploid (DH) Population in
Excel

Goal: create phenotypic values for 30 DH genotypes in Excel; a model for phenotypic performance of these lines

includes the population mean, a single gene with additive effect of +1 or -1 (G), equal environmental effect (E =

+1) for all 30 DH genotypes, no genotype x environment interactions (GxE), and a normally distributed error.

Thus the model is Phenotype = Mean + Genotype + Environment + GxE + Error.

Excel Exercise:

To create a simulated population of 30 DH genotypes in Excel, these are the steps:

1. In column A (Lines), provide line numbers 1-30. Type a “1” in �eld A4 and a “2” in A5. Mark both �elds

with the mouse, and drag down the bottom right corner of the box around �elds A4 and A5 to �eld A33.

This will create numbers 1-30 in sequence within this column in �elds A4-A33.

2. In column B (Environment, Env): type a “1” in �eld B4. Mark this �eld and drag down to B33. All �elds will

in this case show a value of 1.

3. In column C (Mean): type a “150” (bushels per acre). Proceed like in column B, so that all 30 DH

genotypes get the same mean value of 150.

4. In column D (Genotype, G), add the following command in �eld D4: “= IF(RAND()<0.5,-1,1)”. “RAND()” will

generate random numbers in the interval of 0 to 1. Thus, the expression “IF(RAND()<0.5, -1,1)” will

generate a value of -1, when a random number below 0.5 is generated (in 50% of the cases). This

expression will generate a value of +1 in the other 50% of the cases. By entering this command in �eld

D4, and then dragging down to D33, random numbers -1 or 1 will be added in the �elds D4 to D33.

5. In column E (GxE): type a “0” in �eld E4. Mark this �eld and drag down to E33. All �elds will in this case

show a value of 0.

6. In column F (Error), add the following command in �eld F4: “= NORM.INV(RAND(),0,1)”. his command will

create normally distributed random numbers. The Excel NORMINV function calculates the inverse of the

Cumulative Normal Distribution Function for a supplied value of x, and a supplied distribution mean (0 in

this case) & standard deviation (1 in this case). This information and further useful information on

functions in Excel can be found under the Excel “Help function”. When opening this Help function by

clicking on the “?” symbol, information on functions can be accessed in various ways, e.g., by searching

an alphabetical list of functions.

7. The Phenotype can be determined in column I, by adding the following command in �eld I4:

“=SUM(C4:F4)”. This will add for DH genotype 1 the values in �elds C4 to F4, which according to the



model adds up to the Phenotype of this genotype. By dragging down to I33, this summation will be

conducted for all 30 DH genotypes.

8. Additional, new simulations of Phenotypes for 30 DH genotypes are obtained by marking �elds I4-I33, and

copying those into a new column (e.g., K4-K33). By repeating this copy and paste step, multiple sets of

30 DH genotypes can be simulated in short time.



Possible Uses

How could this be used?

Assume, a genetic marker for the gene with additive effect of -1 or +1 is available and co-segregating with that

gene. It could be evaluated, how often a t-test would indicate a signi�cant difference between the two genotype

classes, in other words, it would enable to determine the power of detecting a gene with this effect, in a DH

population of this size. Generally, respective simulation studies can be used to determine the power of

detecting a known effect, and thus help to design proper experiments in terms of population size, number of

environments, etc. The limitation is, that simulation studies have to make assumptions about unknown effects.



Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary ( < 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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