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Introduction

Observing Variables

In the module on Linear Correlation, Regression, and Prediction, we have discussed determining the correlation

and possible regression relationships between an independent variable X and a dependent variable Y.

Speci�cally, in regression, the discussion was based on how the change in one variable (X) produced an effect

on another (Y). This is the essence of regression. But from experience, we know that often multiple causes

interact to produce a certain result. For example, yield from a crop is based on the amount of water a plant has

to use, the soil fertility of the �eld, the potential of the seed to produce a plant, pest and pathogen pressures,

and numerous other factors. In this lesson, we’ll explore how we can determine linear relationships between

multiple independent variables and a single dependent variable.

Fig. 1 Barley yield as a function of rust infection and days to maturity.



Exploring Multiple Variables

Multiple regression functionally relates several continuous independent variables to one dependent variable. In

the above example, barley yield per plot (Y) is shown as function of the percentage of plants in the plot affected

by rust (X1), and the days to maturity required by the cultivar in grown in a particular plot (X2). Yield is modeled

as a linear combination of these two X variables in the response surface on the previous slide. Before we can

relate the dependent variable Y to the independent X variables, we need to know the interrelationships between

all of the variables. Multiple correlation and partial correlation provide measures of the linear relationship

among the variables.

Separating the individual factor’s effect on the whole result, such as the effect of rust infection or the number of

days a particular cultivar require to reach maturity, can be di�cult and at times, confounding. The objective of

this module is to explain and illustrate the principles discussed in the module on Linear Correlation, Regression

and Prediction or correlating two variables or enumerating the effect of one variable on another, but now

expanded to multiple variables.

Objectives

• To de�ne correlation relationships among several variables

• To separate the individual relationships of multiple independent variables with a dependent variable

• To test the signi�cance of multiple independent variables and to determine their usefulness in regression

analysis

• To recognize some of the potential problems resulting from improper regression analysis



Multiple Correlation and Regression

Simple Correlation

SIMPLE, PARTIAL AND MULTIPLE CORRELATION

The correlation of multiple variables is similar to the correlation between two variables. The same assumptions

apply, the sampled Y's should be independent and of equal variance. Error (variance) is associated with the Y's

while X's have no error or the error is small. But now, since there are multiple factors involved, the correlations

are somewhat more complex and interactions between the Xi variables are expected. A note on notation: we

now include a subscript with the "X" to indicate which independent variable to which we are referring. Three

levels of correlation are used in determining the multi-faceted relationships; simple correlation, partial

correlation, and total correlation.

simple correlation

The simple correlation between one of the Xi's and Y is computed for a simple correlation of X and Y. This

calculation assumes a direct relationship between the particular Xi and Y. It is also useful in stating the simple

relationship between two Xi's in the multiple correlation. When determining the signi�cance of regression

coe�cients, the variable with the largest simple correlation with Y is usually the starting point. Some interaction

among numerous X and Y variables is likely to occur. Because two Xi's have large simple correlations with a

resulting Y does not necessarily indicate that their relationships to Y are independent of each other. They may

be measuring the same effect on Y. The number of hours of sunlight (cloud-free skies) and GDDs both have a

good (simple) correlation to the rate of crop development. But their effects would not be additive. There would

be a signi�cant interaction between these two variables in describing crop development. The two variables are

measuring two different factors, light and temperature. But amount of sunlight and temperature are generally

highly correlated during the summer. So there would be a signi�cant relationship between the two variables.

These individual effects can be separated using the partial correlation.

https://pbea.agron.iastate.edu/simple-correlation-0
https://pbea.agron.iastate.edu/simple-correlation-0


Partial Correlation

Quantifying which continuous X variables are best correlated with the continuous Y-variable requires an

understanding of the interactions between the Xi's. To break down the interaction requires partial correlation

coe�cients. These use the simple correlation coe�cients to explain the correlation of two variables with all

other variables held constant. One such example is, "how much yield will result from nitrogen applications

assuming the seasonal amount of rainfall will be average?" Here, rainfall is held constant and the effect of

nitrogen on yield would be used for a partial correlation. This relationship is given for the partial coe�cient of

determination between Y and X1 where two X's are involved, as shown in Equation 1.

To calculate the partial coe�cient of determination between Y and X2, just reverse the equation, i.e. use rYX1

and vice versa. Don't panic! You will not be asked to hand-calculate this on the homework or exam. That is why

we use R!

Equation 1

https://pbea.agron.iastate.edu/partial-correlation-0
https://pbea.agron.iastate.edu/partial-correlation-0


Correlation Matrix

The value rYX1 is the simple correlation between Y and X1. The whole equation describes the correlation

between Y and X1 with X2 held constant. The relationship between the X1 and Y is displayed within the effect of

the interaction. Partial correlations can be calculated for all variables involved. They can also be calculated for

more than three variables, but the equation becomes more complex. Often, the total and partial correlations are

calculated and displayed in a table with the individual Xis and Y listed across the top and down the left side.

The correlations for each variable pair are displayed at the intersection of the variables.

Table 1 Correlation Matrix

  X1 X2 Y

X1 1 0.462 0.693

X2 0.462 1 0.354

Y 0.693 0.354 1



Total Correlation

The combination of these partial effects leads to a multiple correlation coe�cient, R, which states how related

the Y is to the combined effects of the Xi's. For X1, X2, and Y the total correlation is determined once again

using the simple correlations:

In this equation, r2
YX1 and r2

YX2 are just the squares of partial correlation coe�cients.

The calculations for 2 Xi's are relatively straight-forward, but for three or more variables, the calculations involve

a large number of terms with the different correlations among individual variables. Consequently, total

correlation is calculated with computer programs, such as R.

Similar to the linear correlation coe�cient, the total correlation coe�cient, when squared produces the multiple

coe�cient of determination, R2. This value explains the proportion of the Y variation which can be accounted

for by a multiple regression relationship. The partial correlation coe�cients squared produce the partial

coe�cients of determination, r2, or that proportion of variance which can be described by one variable, while

the partial coe�cients will be used in testing individual regression coe�cients for signi�cance.

Equation 2

https://pbea.agron.iastate.edu/multiple-correlation-coefficient
https://pbea.agron.iastate.edu/multiple-correlation-coefficient


Calculating the Correlation

Graphing data to visualize the correlation relationships in multiple dimensions is di�cult. The graphing of data

involving 2 Xi's with Y is possible in 3-dimensional space. Using the variables mentioned, the regression

equation would be a plane in the X1, X2, Y space (Fig. 1). The partial regression coe�cients for X1 with Y and X2

with Y in this space could be used to produce be lines where the plane intersected a certain X value. For

example, the following equation would produce a plane on a graph.

Y = 2.4X1 + 3.9X2 - 7.1

Setting X1 equal to 0 would reduce the above equation of a plane to a linear equation:

Y = 3.9X2 - 7.1

Either X1 or X2 could be set to any value producing any number of different linear relationships in the plane.

With more than two X values, graphing the relationship in 3 dimensions is not easily done. Instead of graphing,

interpreting the data numerically and conceptually is the preferred method.



Ex. 1: Correlation-Multiple Regression Analysis

This exercise contains the following pages:

Ex. 1, Step 1

R CODE FUNCTIONS

• cor

• cor.test

• install.packages

• library

• pcor

Multiple regression functionally relates several continuous independent variables (X), to one dependent

variable, Y. For example, we could carry out multiple regression with yield as the dependent response variable

(Y), X1 as an independent variable indicating the amount of fertilizer applied, and X2 as an independent variable

indicating the amount of water each plot received. In this example, we model yield as a linear combination of

the amount of water and fertilizer applied to each plot in multiple regression. However, before we can relate Y to

the other variables, we need to know the interrelationships of all the variables. Multiple correlation provide

measures of the linear relationship among variables.

head(data)

cor(data$perc.inf, data$Yield)

cor(data$perc.inf, data$Yield)

R returns the simple correlation matrix.

                      dtm      perc.inf         yield

dtm            1.00000000    0.00352555    -0.2268896

perc.inf       0.00352555    1.00000000    -0.9475068

yield         -0.22688955   -0.94750681     1.0000000

Great! Now we have the simple correlation matrix showing the correlations between RIL (Line), days to maturity

(dtm), infection rate (perc.inf) and yield. The correlation matrix returned by R is constructed with the variables

listed as both row and column headings. The top number at the intersection of a row and column is the

correlation coe�cient for those two variables. For, example, the simple correlation between yield and perc.inf is

-0.94750681.



Ex. 1, Step 2

First, calculate the p-value for the simple correlation of perc.inf and yield.

data<-read.csv("barley.csv", header = T)

R returns

Pearson's product-moment correlation

data:   data$perc.inf and data$yield

t = -29.3362, df = 98, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent con�dence interval:

  -0.9644361  -0.9228353

sample estimates:

       cor

-0.9475068

The p-value for the correlation between perc.inf and Yield is 2.2*10-16, which is extremely low. This low p-value

tells us that the correlation between the two variables (yield and perc.inf) is highly signi�cant.

Ex. 1, Step 3

Now, let’s calculate the p-value for the correlation of dtm and yield.

cor.test(data$dtm, data$yield)

R returns

Pearson's product-moment correlation

data:   data$dtm and data$yield

t = -2.3062, df = 98, p-value = 0.0232

alternative hypothesis: true correlation is not equal to 0

95 percent con�dence interval:

  -0.40524772  -0.03189274

sample estimates:

       cor

-0.2268896



The p-value, though not as low as that which was calculated for the correlation between perc.inf and Yield, is

still signi�cant at =0.05. Thus, the correlation between dtm and yield is also signi�cant. Now let’s see if there is

a signi�cant p-value for the correlation of perc.inf and DTM (the two X variables).

Ex. 1, Step 4

Calculate the p-value for the correlation between DTM and perc.inf.

cor.test(data$dtm, data$perc.inf)

R returns

Pearson's product-moment correlation

data:   data$dtm and data$perc.inf

t = 0.0349, df = 98, p-value = 0.9722

alternative hypothesis: true correlation is not equal to 0

95 percent con�dence interval:

  -0.41930262  -0.1998053

sample estimates:

       cor

0.00352555

Based on the extremely high p-value, the correlation between perc.inf and DTM is not signi�cant.

Ex. 1, Step 5

Interpret the results:

Which of the variables are the most correlated? Which will contribute the most to the �nal regression

of yield on dtm and infection rate perc.inf? The �rst question can be answered by looking at the simple

correlation matrix that we created in step 5. perc.inf and yield have a simple correlation of -0.94750681, and

dtm and yield have a simple correlation of -0.22688955. The correlation of dtm and yield has a smaller absolute

magnitude, thus, infection rate (perc.inf) will contribute the most to the regression equation when we calculate

it.

Before we construct a regression model for yield, we need to analyze how days to maturity (dtm) interacts with

infection rate (perc.inf) in the multiple regression. Despite the simple correlation between dtm and perc.inf

being not statistically signi�cant, calculating the partial correlation between these two variables may

helpexplain a possible relationship between them. Simple correlations are the basis for calculating the



additional correlation relationships.

Ex. 1, Step 6

Now, let’s calculate the partial correlation matrix for the 3 variables. To do this, we’ll �rst need to get the

package ‘ppcor’.

Install.packages('ppcor')

library (ppcor)

ppcor(data)

R returns

$estimate

                     dtm      perc.inf         yield

dtm            1.0000000    -0.6790490    -0.6991729

perc.inf      -0.6790490     1.0000000    -0.9720637

yield         -0.6991729    -0.9720637     1.0000000

$p.value            

                     dtm      perc.inf         yield

dtm         0.000000e+00  8.210329e-20  5.887334e-22

perc.inf    8.210329e-20  0.000000e+00  0.000000e+00

yield       5.887334e-22  0.000000e+00  0.000000e+00

$statistic

                     dtm      perc.inf         yield

dtm             0.000000     -9.110368     -9.631483

perc.inf       -9.110368      0.000000    -40.788323

yield          -9.631483    -40.788323      0.000000



Note: Using the pcorr function, we obtain test statistics (t) and p-values without having to use any other

function, such as cor.test. The R output $estimate gives the partial correlations, where one of the 3 variables is

held constant as a partial variable. For example, the partial correlation of yield and perc.inf is

-0.9720637; dtm is held constant as a partial variable for this correlation. The p-value for this correlation, or the

probability of the correlation equal to zero, is so small that R returns a p-value of 0. From this incredibly small

p-value, we would conclude there is a signi�cant correlation between yield and organic perc.inf. The partial

correlation coe�cient between yield and dtm is -0.6991729, and the probability of this correlation being equal

to zero is only 5.887334e-22. Thus, we would conclude that dtm is very much correlated with the yield, at least

under these disease conditions.

Did the partial correlation follow the simple correlation in magnitude? The partial correlation

of dtm with yield (with perc.inf held constant) was -0.6991729, while that of perc.inf with yield (dtm held

constant) is -0.9720637. The squared values of the partial coe�cients of determination are used in calculating

the contribution of each variable to the regression analysis. These values are calculated as in equation 2 from

above for the simplest case of multiple regression, where there are two X’s and one Y. More complex equations

result from equations with more than two X variables.

1. Set your working directory to the folder containing the data �le barley.csv

2. Read the �le into the R data frame, calling it data.

data<-read.csv("barley.csv", header=T)

3. Check the head of the data to make sure it was read in correctly.

4. Calculate the correlation between the fusarium infection rate (perc.inf) and barley yield.

5. Calculate the correlation between DTM and yield.

6. Install the package ‘ppcor’.

7. Load the package.

8. Calculate the partial correlation between yield, dtm, and perc.inf.

https://pbea.agron.iastate.edu/files/qm-mod1-ex1dataxls-0
https://pbea.agron.iastate.edu/files/qm-mod1-ex1dataxls-0


Multiple Regression

Relationships Among Multiple Variables

Multiple regression determines the nature of relationships among multiple variables. The resulting Y is based

on the effect of several X's. How much of an effect each has must be quanti�ed to determine the equation

(below). The degree of effect each X has on the Y is related through partial regression coe�cients. The b-value

estimate of each regression coe�cient can be determined by solving simultaneous equations. Usually,

computer programs determine these coe�cients from the data supplied.

The a is the Y-intercept, or Y estimate when all of the X's are 0. The b's are estimates of the true partial

regression coe�cients β, the weighting of each variable's effect on the resulting Y. The b's are interpreted as the

effect of a change in that X variable on Y assuming the other X's are held constant. These can be tested for

signi�cance. The weighting of effects now will be based on regression techniques.

The simplest example of multiple linear regression is where two X's are used in the regression. The technique of

estimating b1 and b2 minimizes the error sums of squares of the actual from estimated Y's. The variability of

the data (Y's) can be partitioned into that caused by different X variables or into error.

Equation 3



Example of Multiple Correlation and Regression

The simplest example of multiple correlation involves two X's. Calculations with more variables follow a similar

method, but become more complex. Computer programs have eased the computational problems. Proper

analysis of the data and interpretation of analyses are still necessary and follows similar procedures.

The following two-variable research data were gathered relating the yield of inbred maize to the amount of

nitrogen applied and the seasonal rainfall data (Table 2).

Table 2

Yield of Maize

bu/Ac

Fertilizer

lb N/Ac

Rainfall

in.

50 5 5

57 10 10

60 12 15

62 18 20

63 25 25

65 30 25

68 36 30

70 40 30

69 45 25

66 48 30



Review the Data

The �rst issue is to review how highly correlated the data are. Since visualization of multiple data is more

di�cult, numerical relationships must be emphasized. The �rst step is to examine the correlations among the

variables. The simple correlations (calculated as in the module on Linear Correlation, Regression and

Prediction) may be computed for the three variables (see below).

Simple Correlations



Study Questions 1

Which of the X variables is best correlated with Y?

Rainfall (X2)

Fertilizer (X1) 

 Check



Partial Coefficients of Determination

All are highly correlated. But these simple correlations include the interactions among variables. To determine

individual relationships, calculations of partial coe�cients of determination are helpful (below).

These values are the additional variability which can be explained by a variable, such as that by X1, after the

variability of X2 alone has been accounted for. These values are used in computing the ANOVA for multiple

regression. The partial correlations may be found by taking the square root of these partial coe�cients of

determination.

Equation 4



Total Coefficients of Determination

The R2-value is the total coe�cient of determination, which combines the X's to describe how well their

combined effects are associated with the Y's. This is determined by the equation below.

The R2 value is the proportion of variance in Y that is explained by the regression equation. This can be used to

partition the variability in the ANOVA. The square root of this value gives the correlation of the X's with Y. It is

obvious that the correlations are not additive. The simple correlations are all greater than 0.8, and the

correlation between X1 and X2 is 0.905. This is where partial correlation comes into play.

Equation 5



Partial Regression Coefficients

Before we can create an ANOVA and test the regression we need a regression equation as determined by R. The

estimate of the regression relationship is found to be in the below equation.

The partial regression coe�cients indicate that for the data gathered here each additional pound of nitrogen

applied per acre would produce an additional 0.089 bushels of maize per acre, and for each additional inch of

rainfall, an additional 0.516 bushels per acre. An estimate of the yield is determined by entering the amount of

nitrogen applied to the �eld and the amount of rainfall into the equation. The number produced is the regression

equation estimate of the yield based on the data gathered.

The next issue is deciding if this equation is useful and explains the relationship in the gathered data. The sums

of squares are partitioned in an ANOVA table and the signi�cance of the regression equation as a whole and the

individual regression coe�cient estimates are tested for signi�cance in the next section.



Ex. 2: Multiple Regression and Anova Using R (1)

This exercise contains the following pages:

Ex. 2: Multiple Regression and Anova Using R (2)

R CODE FUNCTIONS

• anova

• summary

• lm

• pf

• ppcor

Multiple regression is used to determine the nature of relationships among multiple variables. The response

variable (Y) is de�ned as the product of the effects of several explanatory variables (X’s). The level of effect

each X has on the Y variable must be quanti�ed before a regression equation can be constructed (i.e. equation

3). The degree of effect each X has on the Y is related through partial regression coe�cients. The coe�cient

estimate of each explanatory variable can be determined by solving simultaneous equations. Usually, computer

programs such as R determine these coe�cients from the data supplied.

In equation 3, the a term is the Y-intercept, or the estimate of Y when all of the X’s are 0. The b with each X is an

estimate of the true partial regression coe�cient ß for that X variable; the weighting of each variable’s effect on

the resulting Y. The b’s are interpreted as the effect of a change in that X variable on Y, assuming the other X’s

are held constant. These coe�cients can also be tested for signi�cance. The weighting of effects will now be

based on regression techniques.

The simplest example of multiple linear regression is where two X variables are used in the regression. The

technique of estimating b1 and b2 via multiple regression minimizes the error sums of squares of the actual

data from the estimated Y’s. The variability in the data can be partitioned into that which is caused by different

X variables, or that which is caused by error.

In the �le “QM-Mod13-ex2.csv”, we have yield data from one inbred maize line under all factorial combinations

of 9 different levels of nitrogen treatment, and 9 different levels of drought treatment. We’ll use these data to

investigate correlations between the variables, to do a multiple regression analysis, and to carry out an analysis

of variance (ANOVA).

Ex. 2: Multiple Regression and Anova Using R (3)

Read the dataset into R, and have a look at the structure of the data.

https://pbea.agron.iastate.edu/files/13ex2csv
https://pbea.agron.iastate.edu/files/13ex2csv
https://pbea.agron.iastate.edu/files/13ex2csv
https://pbea.agron.iastate.edu/files/13ex2csv


data<-read.csv("ex2_data.csv", header=T)

head(data)

R returns

      drought          N        yield

1         -4          0     1886.792

2         -4     28.025     2590.756

3         -4      56.05     3743.000

4         -4     84.075     4910.937

5         -4      112.1     5656.499

6         -4    140.125     5689.165

The data contain entries for yield (kg/ha), level of nitrogen applied (kg/ha), and a “drought” score to indicate the

level of drought stress applied (i.e. a level of -4 is the maximum drought stress applied and a value of 4 is the

minimum level of drought stress).

Note: even though we have �xed treatments assigned to each test plot, we will run the analyses in this ALM as

if they were random treatments (i.e. keeping the values for drought and N as numeric). This will allow us to

investigate simple and partial correlations.

Ex. 2: Multiple Regression and Anova (4)

Simple Correlation

The correlation between X and Y ( )

is calculated as the covariance of X and Y divided by the product of the standard deviations of X and Y.

The �rst step is to review how highly correlated the data are. Since visualization of multiple data is more

di�cult, numerical relationships must be emphasized. Let’s examine the correlations among the variables.

Calculate the simple correlations between the 3 variables by entering into the console window.

cor(data)

R returns the simple correlations matrix



             drought            N         yield

drought    1.0000000    0.0000000     0.7364989

N          0.0000000    1.0000000     0.2147159

yield      0.7364989    0.2147159     1.0000000

Ex. 2: Multiple Regression and Anova Using R (5)

Partial Correlation

Taking X1 to be nitrogen, X2 to be drought, and Y to be yield, we can list the simple correlation variables.

Simple Correlations

Both nitrogen and irrigation are correlated with yield, but these simple correlations include interactions among

the variables. To determine individual relationships, calculations of partial correlation coe�cients are helpful.

Partial correlation coe�cient values are the additional variability in the response variable that can be explained

by an independent variable, such as that by X1, after the variability of another independent variable, such as X2,

alone has been accounted for. These values are also used in computing the ANOVA for multiple regression.

We’ll now do a quick investigation of the partial correlations between the variables in the dataset. If you haven’t

already, load the ‘ppcor’ package. Then, use the pcor command to obtain the matrix of partial correlations

between all variables in the data set.

library(ppcor)

pcor(data)

Ex. 2: Multiple Regression and Anova Using R (6)

R returns 3 matrices: a matrix with the partial correlation coe�cient estimates ($estimate), a matrix with the

test statistic for the estimate ($statistic), and a matrix for the p-value of the test statistic ($p.value).

$estimate

           drought            N        yield

dtm     1.0000000    -0.239363    0.7540868



N      -0.2393630     1.000000    0.3174210

yield   0.7540868     0.317421    1.0000000

$p.value

                drought             N          yield

drought   0.000000e+00   0.029458897   3.658519e-24

N         2.945890e-02   0.000000000   3.113831e-03

yield     3.658519e-22   0.003113831   0.000000e+00

$statistic

                drought           N       yield

 dtm           0.000000   -2.177291   10.140333

perc.inf     -2.177291    0.000000    2.956271

yield        10.140333    2.956271    0.000000

Ex. 2: Multiple Regression and Anova Using R (7)

Let's calculate the partial correlation coe�cient for nitrogen on yield by hand to check the calculation returned

by R in the estimate matrix.

You can see that the value in the estimate matrix for the partial correlation coe�cient between nitrogen and

yield is identical to the value obtained by our hand-calculation. Also, based on the p-value matrix, all of the

partial-correlation estimates are statistically signi�cant. 

The test-statistic matrix contains values calculated from the standard mornal distribution (with a mean of 0,

and standard deviation of 1). The test statistic for the partial correlation of nitrogen on yield is 12.12521. We

can check that this value is correct by calculating the p-value for this value from the standard normal

distribution by entering



(1-pnorm(2.95621, mean=0, sd=1))*2

Ex. 2: Multiple Regression and Anova Using R (8)

R returns

[1]0.00311834

The p-value for the partial correlation coe�cient given in the R output from calculating the partial correlation

coe�cients is identical to that given in the R output using the pcor function.

The R2 value is the total coe�cient of determination, which combines the explanatory variables (X’s) to describe

how well their combined effects are associated with the response variable (Y). This is determined by the

following equation:

The R2 is very useful for interpreting how well a regression model �ts. Its value is the proportion of variance in Y

that is explained by the regression equation. The closer to 1.0, the better the �t; a value of 1 would mean all of

the data points fall on the regression line. The square root of this value gives the correlation of the X’s with Y. It

is obvious that the correlations are not additive. This is where partial correlation comes into play.

Ex. 2: Multiple Regression and Anova Using R (9)

The drawback of relying on the R2 value as a measure of �t for a model is that the value of R2 increases with

each additional term added to the regression model, regardless of how important the term is in predicting the

value of the dependent variable. The Adjusted R2 value (or R2
Adj) is a way to correct for this modeling issue.

The formula for Adjusted R2
Adj is:

where R2 is the regression coe�cient, n is the sample size, and k is the number of terms in the regression

model. The R-squared value increases with each additional term added to the regression model so taken by

itself, can be misleading. The R2
Adj takes this into account and is used to balance the cost of adding more

terms; i.e. it penalizes the R2 for each additional term (k) in the model. The R2
Adj value is most important for

comparing and selecting from a set of models with different numbers of regression terms. It is not of great

concern until you are faced with choosing one model to describe a relationship over another. We’ll carry out

hand calculations for both R2 and R2
Adj after we run the regression in R.



Ex. 2: Multiple Regression and Anova Using R (10)

Regression Model Significance

The initial test is to determine if the total regression equation is signi�cant. As in linear regression, “does the

regression relationship explain enough of the variability in the response variable to be signi�cant?”

The testing of the regression equation partitions the total sum of squares using the total coe�cient of

determination, R2 . Note that this is not the same as the square of total correlation.

Initially, the null hypothesis being tested is that the whole regression relationship is not signi�cantly different

from 0.

Ex. 2: Multiple Regression and Anova Using R (11)

The F-test for multiple linear regression uses the regression mean square to determine the amount of variability

explained by the whole regression equation. If the regression mean square is signi�cant at your speci�ed level,

the null hypothesis that all of the regression coe�cients are equal to 0 is rejected. This F-test does not

differentiate between coe�cients; all are signi�cant or none are according to the test.

Individual regression coe�cients (b1, b2, etc.) may be tested for signi�cance. The simple coe�cient of

determination between each X and Y explains the sum of squares associated with each regression coe�cient

including interactions with other X’s. The partial coe�cient of determination between each X and Y explains the

additional variability without interaction. These can be tested with the residual error not explained by the

regression model to test the signi�cance of each X.

Each coe�cient may also be tested with a t-test; R does this automatically when you run a multiple regression

model using the lm function.

Ex. 2: Multiple Regression and Anova Using R (12)

MULTI-LINEAR REGRESSION

Let’s run a multiple regression analysis where yield is the response variable and drought and nitrogen are the



explanatory variables. We will keep nitrogen and drought as numeric variables for this analysis, but later will run

the same analysis with these variables as factors.

In the console window, enter

summary(1m(data=data,yield~drought+N))

Let’s go through this command from the inside out.

1. data = data indicates that we want to run the linear model with dataset ‘data’

2. yield~ drought + N speci�es that the regression equation we are analyzing is yield = ‘the amount of

nitrogen applied’ + ‘the amount of drought applied’

3. lm indicates to R that we want to run a linear regression model

4. Summary indicates that we want R to return all of the useful information from the regression analysis

back to us.

Ex. 2: Multiple Regression and Anova Using R (13)

R returns

Call:

lm(formula = yield ~ drought + N, data = data)

Residuals:

    Min       IQ      Median       3Q       Max

-4204.2  -1118.0         1.8   1251.6    3148.9

Coe�cients:

                Estimate Std. Error t value Pr(>|t|)

(Intercept)     7829.436    363.787  21.522   <2e-16 ***



drought          774.828     76.410  10.140 6.78e-16 ***

N                  8.060      2.727   2.956  0.00412 ***

---

Signif. codes:

0 '***' 0.001 '**' 001 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1776 on 78 degrees of freedom

Multiple R-squared: 0.5885,

   Adjusted R-squared: 0.578

F-statistic: 55.78 on 2 and 78 DF, p-value: 9.1e-16

Ex. 2: Multiple Regression and Anova Using R (14)

The R2 value is given at the bottom of the R output as 0.5885. This means that the model explains 58.85% of

the variation in yield. Let’s calculate the R2 value by hand using the simple correlation coe�cient matrix from

above.

The value obtained for R2 obtained by our hand calculation is identical to the value returned by R.

Now, let’s calculate the R2
Adj for the model by hand. Use the value of R2 from the R output (0.5885).

This is the same value for R2
Adj as given in the R output (under “Adjusted R-squared”).



Ex. 2: Multiple Regression and Anova Using R (15)

VARIABLE INTERACTION

Should we include a term in the linear model indicating the interaction between nitrogen and drought? Let’s run

the regression again, this time adding a variable accounting for the interaction between the two independent

variables into the model. (i.e. the amounts of drought and nitrogen applied). The interaction variable is

speci�ed using a multiplication sign (*) with the explanatory variables that you are analyzing for interaction.

summary(1m(data=data,yield~N+drought+N*drought))

Ex. 2: Multiple Regression and Anova Using R (16)

R returns

Call:

lm(formula = yield ~ N + drought + N * drought, data = data)

Residuals:

    Min        IQ   Median      3Q      Max

-3857.9   -1076.4     22.8  1244.8   3148.9

Coe�cients:

               Estimate Std.   Error  t value  Pr(<|t|)

(Intercept)        7829.436  364.898   21.457   < 2e-16  ***

N                     8.060    2.735    2.947   0.00424  **

drought             688.736  141.324    4.873  5.75e-06  ***



N:drought             0.768    1.059    0.725   0.47061  

---

signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1781 on 77 degrees of freedom

Multiple R-squared: 0.5913

  Adjusted R-squared: 0.5754

F-statistic: 37.14 on 3 and 77 DF, p-value: 5.986e-15

Ex. 2: Multiple Regression and Anova Using R (17)

Compare the R2
Adj value and the F-statistic of the model including the interaction to the model not including the

interaction. Which model �ts the data better?

With interaction: R2
Adj = 0.5754, F = 37.14

Without interaction: R2
Adj = 0.578, F = 55.78

The model without the interaction between Nitrogen and Irrigation has a slightly better �t for these data than

the model including the interaction. Also, the regression coe�cient on the interaction term has a very high

p-value, indicating that is not statistically signi�cant. Save the model without the interaction as ‘m1’.

m1<-1m(data=data,yield~N+drought)

Ex. 2: Multiple Regression and Anova Using R (18)



Calculate the ANOVA table for the multiple regression models with and without the interaction between N and

drought.

First carry out the ANOVA for the model without the interaction.

Enter into the console window

anova(lm(data=data,yield~drought+N))

R returns the ANOVA table

Now run the ANOVA with the linear model excluding the interaction term.

anova(lm(data=data,Yield~drought+N))

Ex. 2: Multiple Regression and Anova Using R (19)

R returns the ANOVA table

Analysis of Variance Table

Response: yield

          Df       Sum Sq     Mean Sq    F value      Pr(<F)

drought    1    324193187   324193187   102.8263   6.785e-16  ***

N          1     27554215    27554215     8.7395    0.004118  **

Residuals 78    245920315     3152822  

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Interpret the results of these ANOVA tables



Ex. 2: Multiple Regression and Anova Using R (20)

The ANOVA table lists the model, error, and the sources of variation along with their respective degrees of

freedom (df), sum of squares, mean squares and an F-test for the model. Each model parameter has 1 df. The

total df is 1 less than the total number of observations, in this case 80 (i.e. 1 + 1 + 78). This correction is for the

intercept; the single df that is subtracted re�ects this. We are most interested in the F-test for the model, which

is calculated by dividing the model MS by the error MS. The F-statistic and p-value of the F-statistic for the

model are listed at the bottom of the R output that we obtained from running the multiple regression model. The

model MS is not listed in the anova table R returned to us, however, we can easily calculate the F-statistic for

the model using the anova output as the mean of the F-statistics for the model parameters. The p-value for the

model can also be calculated from the anova table. The F-statistic value we obtain by averaging the inorganic

and organic F-statistics is

To get the p-value for this F-statistic, in the R console window enter

1-pf(55.78,2,80)

Ex. 2: Multiple Regression and Anova Using R (21)

The value returned is 3.725908*10-13. The probability of the F-statistic value of 78.4533 occurring by chance is

only incredibly small, so we conclude that the model we have developed explains a signi�cant proportion of the

variation in the data set.

R2 can be calculated from the anova table as the model sum of squares (SS) divided by the corrected total SS.

This is the same value as was reported for R2 in the regression output.

MLR with factors

Let’s run the same multiple regression model again, but this time having N and drought as factors instead of

numbers. We must tell R that we want entries for these variables to be considered factors, and not numbers. As

factors, there are 9 speci�ed treatment amounts for each of the 2 independent variables, and 81 possible

combinations between the 2 factor variables.



Convert the data for N and drought into factor variables.

Ex. 2: Multiple Regression and Anova Using R (22)

Enter into the R console

data$N<-as.factor(data$N)

data$drought<-as.factor(data$drought)

Test to make sure that R now recognizes the N variable as a factor.

Enter into the R console

is.factor(data$N)

R returns

[1]TRUE

Great, now let’s run the multiple regression. Save this model as ‘m2’.

m2<-summary(1m(data=data,yield~drought+N))

summary(m2)

Ex. 2: Multiple Regression and Anova Using R (23)

R returns

Call:

lm(formula = yield ~ drought + N, data = data)

Residuals:

    Min      IQ    Median     3Q     Max



-344.37  -86.09      0.00  86.09  344.37

Coe�cients:

             Estimate Std.  Error   t value   Pr(>|t|)

(Intercept)       1542.42   73.95     20.86    < 2e-16  ***

drought-3         1849.62   76.10     24.31    < 2e-16  ***

drought-2         3661.00   76.10     48.11    < 2e-16  ***

drought-1         5180.37   76.10     68.08    < 2e-16  ***

drought0          6225.43   76.10     81.81    < 2e-16  ***

drought1          6730.03   76.10     88.44    < 2e-16  ***

drought2          6760.31   76.10     88.84    < 2e-16  ***

drought3          6198.62   76.10     85.40    < 2e-16  ***

drought4          6198.62   76.10     81.46    < 2e-16  ***

N25                790.06   76.10     10.38   2.35e-15  ***

N50               2028.39   76.10     26.66    < 2e-16  ***

N75               3282.42   76.10     43.14    < 2e-16  ***

N100              4114.07   76.10     54.06    < 2e-16  ***

N125              4232.83   76.10     55.62    < 2e-16  ***

N150              3597.21   76.10     47.27    < 2e-16  ***

N175              2429.25   76.10     31.92    < 2e-16  ***



N200              1136.95   76.10     14.94    < 2e-16  ***

Ex. 2: Multiple Regression and Anova Using R (24)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 161.4 on 64 degrees of freedom

Multiple R-squared:  0.9972,

  Adjusted R-squared: 0.9965

F-statistic: 1430 on 16 and 64 DF,  p-value: < 2.2e-16

Explain how these results differ from the linear regression with our explanatory variables as numbers (how do

the R2 values differ?) .

Under the “Coe�cients” heading, in the “Estimate” column, we �nd the intercept, as well as the X variable

coe�cients for the multiple regression equation. You’ll notice that the variables for drought = -4 and N = 0 are

not listed in the “Coe�cient” output. The reason for this is that the “intercept” encapsulates these variables,

meaning N=0 and drought = -4 is the baseline in the regression model. All of the other effects of variable

combinations on yield are quanti�ed with respect to this baseline.

Ex. 2: Multiple Regression and Anova Using R (25)

Write the equation from the linear regression output of the model yield~drought + N for N=25 and drought= 0,

with “drought” and “N” as numeric variables. Then write out the equation for the same linear model and

parameters, but with “drought” and “N” as factors. Compare the predicted yields

Intercept + N + drought ~Yield

#numeric model

124.4880 + 0.1437*(25) + 12.3198*(0) = 128.0805

#factored model

24.525 + 12.562 + 98.984 = 136.071



You can calculate a prediction from a linear model with R too. For the same parameters (N = 25, drought = -1)

For the non factored linear model (’m1’), enter

predict(m1,list(N=25,drought=0))

Ex. 2: Multiple Regression and Anova Using R (26)

R returns

8030.944[kg/hectare]

#factored model (m2)(notice the quotes around the numbers to indicate factors).

predict(m2,list(N="28.025",drought="o"))

R returns

8557.915[kg/hectare]



Ex. 3: Correlation, Multiple Regression and Anova (1)

This exercise contains the following pages:

Ex. 3: Correlation, Multiple Regression and Anova (2)

R CODE FUNCTIONS

• anova

• summary

• lm

• install.packages

• library(’ppcor’)

• cor

• pcor

You are a maize breeder in charge of developing an inbred line for use as the ‘female’ parent in a hybrid cross.

Yield of the inbred female parent is a major factor affecting hybrid seed production; a high level of seed

production from the hybrid cross leads to more hybrid seed that can be sold. Only 2 lines remain in your

breeding program, and your boss wants you to determine which of the two lines has the best yield-response to

variable Nitrogen fertilizer (N) applications under several different drought levels. The three-variable dataset

relating the yield (per plot) of the 2 inbred lines to the amount of N and level of drought applied to each plot can

be found in the �le 13_ex3.csv.

Determine the simple and partial correlation amongst yield and the amount of nitrogen fertilizer applied, and

drought for each of the lines. Then, develop a regression equation to predict yield from the independent

variables. Test to see if an interaction between drought and N should be included in the linear model. Decide on

a model to evaluate these data and decide which of the 2 lines should be selected.

Load the �le ex3.csv into R.

data<-read.csv("ex3.csv",header=TRUE)

Check the head of the data to make sure the �le was read into R correctly.

head(data)

         drought           N      yield     rep    line

1            -4       0.000   2991.842       1       1

2            -4      28.025   3533.566       1       1

3            -4      56.050   2900.837       1       1

https://pbea.agron.iastate.edu/files/qm-mod13-ex3dataxls
https://pbea.agron.iastate.edu/files/qm-mod13-ex3dataxls
https://pbea.agron.iastate.edu/files/qm-mod13-ex3dataxls
https://pbea.agron.iastate.edu/files/qm-mod13-ex3dataxls


4            -4      84.075   5759.073       1       1

5            -4     112.100   7630.583       1       1

6            -4     140.125   6723.432       1       1

Ex. 3: Correlation, Multiple Regression and Anova (3)

All data should be of the numeric class (that is, R recognizes all entries for all explanatory variables as

numbers). Calculate the simple correlation matrix for the data.

cor(data)

              drought          N       yield         rep        line

drought     1.0000000  0.0000000  0.71394080  0.00000000  0.00000000

N           0.0000000  1.0000000  0.20700055  0.00000000  0.00000000

yield       0.7139408  0.2070006  1.00000000 -0.05199154  0.09821234

rep         0.0000000  0.0000000 -0.05199154  1.00000000  0.00000000

line        0.0000000  0.0000000  0.09821234  0.00000000  1.00000000

Interpret the results:

Drought has a very high simple correlation with yield, and N has a moderate correlation with yield. Keeping in

mind that all variable data are classi�ed as numbers, what does the positive correlation between line and yield

imply (think about how line is coded in the data)?

Ex. 3: Correlation, Multiple Regression and Anova (4)

There are only 2 lines in the data. The positive correlation between yield and line means that the two variables

move into the same direction; a higher value for line (i.e. 2) corresponds to higher values of yield, and vice

versa. This positive correlation provides evidence for line 2 being the higher yielding line.

If there were more than 2 lines and more than 2 reps in these data, could we analyze the data in the same way

(i.e. could ‘line’ and ‘rep’ be classi�ed as numbers in the analysis)? Could we calculate the correlation between

yield and line, and rep and yield? If we had more than 2 lines and reps in these data, we’d have to reclassify the

‘line’ and ‘rep’ variable as factors. We would then not be able to calculate the correlation between yield and line,

and rep and yield.



You should’ve already installed the package ‘ppcor’. If you have, ignore the ‘install.package’ command, and

simply load the package using the ‘library’ command.

install.packages ('ppcor')

library(ppcor)

Calculate the partial correlations between the 3 variables.

pcor(data)

Ex. 3: Correlation, Multiple Regression and Anova (5)

$estimate

            drought            N       yield         rep         line

drought  1.00000000  -0.21992608  0.73450000  0.05771514  -0.10816995

N       -0.21992608   1.00000000  0.29942284  0.02352788  -0.04409606

yield    0.73450000   0.29942284  1.00000000 -0.07857745   0.14727018

rep      0.05771514   0.02352788 -0.07857745  1.00000000   0.01157211

line    -0.10816995  -0.04409606  0.14727018  0.01157211   1.00000000

$p.value

              drought             N         yield        rep         line 

drought  0.000000e+00  5.659152e-05  2.912615e-83  0.3018162  0.051970262

N        5.659152e-05  0.000000e+00  2.082329e-08  0.6742387  0.430493426

yield    2.912615e-83  2.082329e-08  0.000000e+00  0.1591930  0.007829716

rep      3.018162e-01  6.742387e-01  1.591930e-01  0.0000000  0.836245389



line     5.197026e-02  4.304934e-01  7.829716e-03  0.8362454  0.000000000

$statistic

          drought           N      yield        rep        line

drought  0.000000  -4.0265902  19.331597  1.0325464  -1.9433800

N       -4.026590   0.0000000   5.605018  0.4203378  -0.7883476

yield   19.331597   5.6050183   0.000000 -1.4077910   2.6593260

rep      1.032546   0.4203378  -1.407791  0.0000000   0.2066984

line    -1.943380  -0.7883476   2.659326  0.2066984   0.0000000

What linear model would you use to analyze these data? Should you include the interaction between N and

drought? Should you include rep? Should you include line? Test some possible models, then explain which

model you think is best and why.

Ex. 3: Correlation, Multiple Regression and Anova (6)

The coe�cient on the interaction (drought*N) is signi�cant (barely) at =0.1. Coe�cient on rep is not signi�cant.

Thus, ‘rep’ should be excluded and the interaction term should be included.

summary(1m(data,yield~line+drought+N+drought*N))

Call

lm(formula = yield ~ line + drought + N + drought * N, data = data)

Residuals:

    Min      IQ  Median        3Q       Max

-4849.1 -1269.8    16.7    1296.9    4790.0



Coe�cients:

               Estimate  Std. Error  t value  Pr(<|t|)

(Intercept)   8093.5905    367.4571   22.026   < 2e-16  ***

line           555.6503    208.7016    2.662   0.00815  **

drought        678.7811     74.5214    9.109   < 2e-16  ***

N                8.0924      1.4421    5.612  4.36e-08  ***

drought:N        0.9225      0.5585    1.652   0.09959  .

---

Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1878 on 319 degrees of freedom

Multiple R-squared: 0.5659,

  Adjusted R-squared: 0.5605

F-statistic: 104 on 4 and 319 DF, p-value: < 2.2e-16

Ex. 3: Correlation, Multiple Regression and Anova (7)

Run the anova for the linear model you chose in the previous question.

anova(lm(data=data,yield~line+drought+N+N*drought))

Analysis of Variance Table



Response: yield

             Df      Sum Sq     Mean Sq    F value      Pr(>F)

line          1    25008526    25008526     7.0885    0.008151  **

drought       1  1321540272  1321540272   374.5793   < 2.2e-16  ***

N             1   111096151   111096151    31.4893   4.357e-08  ***

drought:N     1     9624425     9624425     2.7280    0.099589  .

Residuals   319  1125452898     3528066

---

Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the regression equation, what yield value would you predict to obtain for each line under N = 100 and

drought = 0?

#Note: line=0 is used for 'line 1' and line=1 is used for 'line 2'.

predict(m1, list(N=140.125,drought=0,line=1))

9783.187

predict(m1,list(N=140.125,drought=0,line=2))

10338.84

Ex. 3: Correlation, Multiple Regression and Anova (8)

Interpret the results, which line would you choose and why?

Line 2, higher predicted yield.

Designate ‘line’ as a factor, and run the linear regression again with the same model.



data$line<-as.factor(data$line)

data$rep<-as.factor(data$rep)

summary(1m(data=data,yield~line+rep+drought+N+N*drought))

Interpret the results of the linear regression output with line as a factor (i.e. why is ‘line2’ listed and ‘line1’ not

listed in the output?).

’line2’ indicates that if we are predicting a yield for line 2 based on the linear regression, we need to add 555.6503

kg/ha to the predicted yield. If a yield value for ‘line1’ is being predicted, we do not add anything to the predicted

yield value based on the line. In effect, the ‘Intercept’ includes ‘line1’. ‘line1’ can be considered the baseline, and

the ‘line2’ a deviation from the baseline.

Ex. 3: Correlation, Multiple Regression and Anova (9)

Call:

lm(formula = yield ~ line + drought + N + drought * N, data= data)

Residuals:

    Min        IQ   Median       3Q      Max

-4996.2   -1303.3     11.6   1389.3   4937.0

Coe�cients:

               Estimate   Std. Error   t value   Pr(>|t|)

(Intercept)   8796.3156     242.1130    39.331    < 2e-16  ***

line2          555.6503     208.3777     2.667    0.00806  **

rep           -294.1495     208.3777    -1.412    0.15904  



drought        678.7811      74.4057     9.123    < 2e-16  ***

N                8.0924       1.4399     5.620   4.17e-08  ***

drought:N        0.9225       0.5577     1.654    0.09907  .

---

Signif. codes:  0 '***' 0.001 "**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1875 on 318 degrees of freedom

Multiple R-squared:  0.5686,

   Adjusted R-squared:  0.5686

F-statistic:   83.83 on 5 and 318 DF,  p-value:  < 2.2e-16



Testing Multiple Regression

Regression Model Significance

Because multiple effects are involved in multiple regression, determination of which terms and variables are of

importance adds a level of di�culty to the analysis. Not only are there direct effects from certain variables, but

combinations of effects among separate variables. These are caused by interaction between several variables.

The effects are estimated by using the associated regression coe�cients.

The initial test is to determine if the total regression equation is signi�cant. As in linear regression, "Does the

regression relationship explain enough of the variability in Y to be signi�cant?" Partitioning the sums of squares

into an ANOVA table can be used to resolve the hypothesis test. The ANOVA table for multiple regression is

similar to that in linear regression. Additional regression degrees of freedom are included for each X variable.

Two df are used for a regression relationship with two variables.

The testing of the regression equation partitions the total sum of squares using the total coe�cient of

determination, R2, below equation. Note that this is the same as the square of the total correlation, as given in

"Total Correlation".

Equation 6

https://pbea.agron.iastate.edu/total-correlation-equation
https://pbea.agron.iastate.edu/total-correlation-equation


The Whole Regression Relationship

The hypothesis being tested, initially, is to test the whole regression relationship to see if it is signi�cantly

different from 0, Equation 7.

The F-test uses the regression mean square, RegMS, to determine the amount of variability explained by the

whole regression equation. If the RegMS is signi�cant at your alpha level, the null hypothesis that all of the

partial regression coe�cients equal 0 is rejected. This F-test does not differentiate any coe�cients, all are

signi�cant or none are according to the test.

The total sum of squares in this data set can be calculated as 338 (see Exercise 3). The R2 was calculated in

last section as 0.900. The ANOVA table (Table 3) with two degrees of freedom is calculated.

The complete regression model is signi�cant at a probability much less than 0.01. The regression equation is

signi�cant, explaining su�cient variability in the data.

Equation 7

Table 3

Source df SS MS F P

Treatment 2 304.2 152.10 31.51 0.00032

Block 7 33.8 4.83    

Total 9 338.0      



Regression Coefficient Signficance

Individual regression coe�cients (b1, b2, etc.) may be tested for signi�cance. The simple coe�cient of

determination between each X and Y explains the sum of squares associated with each regression coe�cient

including interactions with other X's. The partial coe�cient of determination between each X and Y explains the

additional variability without interaction. These can be tested with the residual error not explained by the

regression to test the signi�cance of each b.

Each coe�cient may also be tested with a t-test, and this is done in the Parameter Estimates table of the lm()

Output. Tested individually, X2 is signi�cant while the coe�cient for X1 is not signi�cant. The nitrogen term

would probably be dropped because it explains little additional variance beyond that from the rainfall. The �nal

equation would be a simpler linear equation obtained by just adding Rainfall to the Fit Model, not including N

Fertilizer. This equation is:

You will note from the original regression equation that the X1 coe�cient was small. This does not necessarily

mean that small regression coe�cients are not signi�cant. They need to be tested to determine their

signi�cance. The testing is not to attempt to remove terms but to remove terms which add to the complexity

without explaining variability in the regression analysis. Dropping terms from an equation is not always done.

All coe�cients in the regression equation may be signi�cant and may be kept to explain the variability in the

response.

Equation 8



Ex. 4: Non-Linear Regression and Model Comparison (1)

R CODE FUNCTIONS

• anova

• summary

• lm

• install.packages

• library

• cor

• pcor

• ggplot

• reshape2

If the assumptions necessary for multiple regression are not met, a number of problems can arise. These

problems can usually be seen when examining the residuals; the difference of the actual Y’s from the predicted

Y’s.

First; if the Y’s are not independent, serial correlation (or auto-correlation) problems can result. These can be

seen if the residuals are plotted versus the X values, showing a consistently positive or negative trend over

portions of the data. When collecting data over a period of time, this can be a problem, since temporal data has

some relationship to the value at the previous time. For instance, a temperature measurement 5 minutes after a

previous one is going to be strongly correlated with the previous measurement because temperatures do not

change that rapidly. These problems can be overcome by analyzing the data using different techniques. One of

these is to take the difference of the value at the current time step from the value at the last time step as the Y

value instead of the measured value.



Ex. 4: Non-Linear Regression and Model Comparison (2)

Second, violating the equal variances assumption leads to heteroscedasticity. Here the variance changes for

changing values of X. A plot of residuals where the spread gradually increases toward lower or higher X’s can

also occur.

The third problem is multicollinearity. Here two or more independent variables (X’s) are strongly correlated (for

example the growing degree days (GDD) and hours of sunlight). The individual effects are hard to separate and

lead to greater variability in the regression. Large R2 values with insigni�cant regression coe�cients are seen

with this problem. Eliminating the least signi�cant variable, after testing, will often solve this problem without

changing the R2 very much.



Ex. 4, Non-Linear Regression and Model Comparison (3)

POLYNOMIAL FUNCTION

A set of functions which can be useful for describing quantitative responses are the various orders of

polynomial functions. Polynomial functions have a general form

A horizontal line is a polynomial function of order 0. Linear relationships are polynomial functions of the �rst

order. The highest exponent of X in the function determines the order of the polynomial (0 for a horizontal line,

1 for simple linear regression equation). Each order has a distinctive shape. First order polynomials produce a

straight line, second order polynomials produce a parabola, third order polynomials produce a parabola with one

in�ection point and fourth order polynomials produce a parabola with 2 in�ection points. Graphs of the �rst 4

orders are shown below.



Ex. 4, Non-Linear Regression and Model Comparison (4)

As with the other functions, an in�nite number of curves may be created by carrying the coe�cients. A

polynomial function can usually be �t to most sets of data. The value of such relationships can be questioned

at very high orders, though. Important in most functional relationships is the physical or biological relationship

represented in the data. Higher order relationships sometimes produce detailed equations which have a

relatively limited physical or biological relevance.

ADDING ORDERS OF FUNCTIONS

Polynomial relationships are calculated to reduce the variability around the regression line, whatever the order.

The usual technique is to begin with a linear equation. If the deviation from this line is signi�cant, add a term to

reduce the sum of squares about the line. Adding another order to the polynomial reduces the sums of squares.

When the reduction of the sum of squares (SS) by adding another order becomes small, the limit of the equation

has been reached. Enough terms can be added to �t any dataset. Generally, a third order equation is the upper

limit of terms in an equation to have any relevance. More terms often simply �t the error scatter of the data into

the equation without adding additional relevance.



Ex. 4, Non-Linear Regression and Model Comparison (5)

Each additional order should be tested for signi�cance using the hypothesis H0: highest order coe�cient = 0.

This can be tested using the equation

Now we’ll look at some very simple data and try to �nd the best model to �t the data. In the �le QM-Mod13-

ex4.csv, you’ll �nd a very small data set giving the rate of runoff () for various amounts of rainfall. Read the �le

QM-Mod13-ex4.csv into R and take a look at it (there are only 10 entries, so don’t use the “head” command).

data<-read.csv("ex4.csv",header=T)

data

https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv
https://pbea.agron.iastate.edu/files/qm-mod13-ex4csv


Ex. 4, Non-Linear Regression and Model Comparison (6)

R returns

       Rainfall    Runoff

1          3.00      0.00

2         12.00      1.00

3         14.00      2.50

4         14.50      3.25

5         15.00      8.50

6         15.50      9.50

7         16.00     12.50

8         17.50     13.50

9         19.00     16.00

10        19.25     19.00

Let’s plot the data quickly to see if we visualize any obvious trends.

library(ggplot2)

gplot(data=data,x=Rainfall,y=Runoff)



Ex. 4, Non-Linear Regression and Model Comparison (7)

R returns

Let’s run the regression models of the 1st and 2nd order (i.e. Runoff ~ Rainfall and Runoff ~ Rainfall^2) and

compare them, visually and statistically. We’ll plot the predictive function given by each regression model

output on a scatterplot with these data and compare the models visually.

We use “I” in front of the “x” variable in the “lm” command to indicate to R that we want the higher order of x

included in the model (i.e. for a second order model, we would indicate x2 by entering: I(x^2).

Fig. 2



Ex. 4, Non-Linear Regression and Model Comparison (8)

Enter the models into the R console. Call the “Rainfall” variable x, and the “Runoff” variable y.

x<-data$Rainfall 

y<-data$Runoff

m1<-1m(y~x,data-data)                   #1st order

m2<-1m(y~x+I(x^2),data=data)            #2nd order

m3<-1m(y~x+I(x^2)+I(x^3),data=data)     #3rd order

Here, we create the points on the line or parabola given by each model. Because the distance between these

points is so small, they will appear as a line on our �gure.

1d<-data.frame(x=seq(0,20,by=0.5))

result<-1d

result$m1<-predict(m1,newdata=1d)

result$m2<-predict(m2,newdata=1d)

result$m3<-predict(m3,newdata=1d)



Ex. 4, Non-Linear Regression and Model Comparison (9)

Here, we use the package “reshape2” to change the format of the data to facilitate graphing in the next step.

library(reshape2)

library(ggplot2)

result<-melt(result,id,vars="x",variable.name="mode1",value.name="�tted")

names(result)[1:3]<-c("rainfall","order","runoff")

levels(result$order)[1:3]<-c("1st","2nd","3rd")

Finally, we are ready to plot the 1st, 2nd, and 3rd order regression models on top of the original date.

ggplot(result,aes(x=rainfall,y-runoff))+

theme bw()+ggtitle("Rainfall/Runoff data with 3 regression models")+

geom point(data=data,aes(x=x,y=y))+

xlab("Rainfall (mm)")+

ylab("Runoff(m^3/sec)")+

geom line(aes(colour=order),size=1)



Ex. 4, Non-Linear Regression and Model Comparison (10)

R returns

1ST ORDER MODEL

Let’s take a look at the output for the 1st order regression model and anova.

summary(m1)

anova(m1)

Fig. 3



Ex. 4, Non-Linear Regression and Model Comparison (11)

R outputs,

Call:

lm(formula = y ~ x, data = data)

Residuals:

    Min       1Q   Median       3Q      Max

-5.4079  -3.5828   0.6918   2.2866   5.0015

Coe�cients:

              Estimate Std. Error t value Pr(>|t|)

(Intercept)    -8.3336     4.5632  -1.826  0.10524

x               1.1601     0.2997   3.871  0.00473

(Intercept)

x              **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.174 on 8 degrees of freedom



Multiple R-squared:   0.6519,

   Adjusted R-squared:   0.6084

F-statistic:  14.98 on 1 and 8 df, p-value: 0.004735



Ex. 4, Non-Linear Regression and Model Comparison (12)

Analysis of Variance Table

Response: y

             Df Sum Sq Mean Sq F value    Pr(>F)

x             1 261.11 261.105  14.984  0.004735

Residuals     8 139.40  17.425

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The equation given by the linear model is yRunoff = -8.3336 + 1.1601xRainfall. The intercept is not statistically

signi�cant, the x variable is. The r2 value is 0.6519, and the linear regression is signi�cant but there is scatter

about the regression line. The anova shows a regression SS of 261.11 and a residual SS of 139.4 for the 1st

order model.



Ex. 4, Non-Linear Regression and Model Comparison (13)

2ND ORDER MODEL

summary(m2)

anova(m2)

R outputs,

Call:

lm(formula = y ~ x + I(x^2), data = data)

Residuals:

   Min      1Q   Median     3Q    Max

-2.512  -1.558    0.205  1.189  3.292

Coe�cients:

               Estimate Std. Error t value Pr(>|t|)

(Intercept)     4.20020    3.44216   1.220  0.26189

x              -1.87695    0.63627  -2.950  0.02141  *

I(x^2)          0.13687    0.02785   4.915  0.00172  **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Residual standard error: 2.115 on 7 degrees of freedom

Multiple R-squared:   0.9218,

    Adjusted R-squared:   0.8995

F-statistic: 41.26 on 2 and 7 df, p-value: 0.0001337



Ex. 4, Non-Linear Regression and Model Comparison (14)

Analysis of Variance Table

Response: y

            Df   Sum Sq  Mean Sq  F value     Pr(>F)

x            1  261.105  261.105   58.363  0.0001222  ***

I(x^2)       1  108.085  108.085   24.160  0.0017229  **

Residuals    8   31.316    4.474   

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here you can see that the R2 value increased, indicating that more of the variance in the data is explained by the

regression equation. Testing the reduction using the F-test produces a very signi�cant decrease in unexplained

variability as the residual SS drops from 139.4 to 31.316. The regression line follows the data closely.



Ex. 4, Non-Linear Regression and Model Comparison (15)

3RD ORDER MODEL

Let’s take a look at the output for the 1st order regression model and anova.

summary(m3)

anova(m3)

Call:

lm(formula = y ~ x + I(x^2) + I(x^3), data = data)

Residuals:

    Min       1Q    Median      3Q     Max

-2.7284  -1.2079    0.3878  1.1311  2.4531

Coe�cients:

               Estimate  Std. Error  t value  Pr(>|t|)

(Intercept)    15.51888    10.04750    1.545     0.173

x              -6.94363     4.28634   -1.620     0.156

I(x^2)          0.63545     0.41826    1.519     0.180

I(x^3)         -0.01393     0.01166   -1.195     0.277

Residual standard error: 2.053 on 6 degrees of freedom

Multiple R-squared:   0.9368

   Adjusted R-squared:   0.9052

F-statistic:  29.66 on 3 and 6 df, p-value: 0.0005382



Ex. 4, Non-Linear Regression and Model Comparison (16)

Analysis of Variance Table

Response: y

            Df   Sum Sq  Mean Sq  F value     Pr(>F)

x            1  261.105  261.105  61.9225  0.0002229  ***

I(x^2)       1  108.085  108.085  25.6330  0.0023041  **

I(x^3)       1    6.017    6.017   1.4269  0.2773480

Residuals    8   25.300    4.217  

---

Signif. codes:   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, you see that not much more information about the response has been gained. The R2 (and R2
Adj)

increases little, and very little additional variability is explained in the third order regression. In the anova table,

the F-value for the third order-regression is not signi�cant at even the 0.10 level. The second order polynomial,

therefore, is the best polynomial equation for describing the response. Physically, we are trying to �t a

relationship of rainfall to runoff. The negative runoff or in�ltration after rain begins makes sense. The x2

relationship may be explainable since we are considering a volume of runoff from a depth of rainfall. The

equation does �t the data well. Again, this �ts only the data gathered. Use of this relationship beyond the scope

of this dataset would be improper.



Problems in Multiple Regression

Examining Problems

Recall the assumptions for regression discussed at the beginning of the lesson and in the module on Mean

Comparisons. If the assumptions necessary for multiple regression are not met, a number of problems can

arise. These problems can usually be seen when examining the residuals, the difference of the actual Y's from

the predicted Y's.

First, if the Y's are not independent, serial correlation or auto-correlation problems can result. These can be

seen if the residuals are plotted versus the X values, showing a consistently positive or negative trend over

portions of the data. When collecting data over a period of time, this can be a problem, since temporal data has

some relationship to the value at the previous time. For instance, a temperature measurement 5 minutes after a

previous one is going to be strongly correlated with the previous measurement because temperatures do not

change that rapidly. These problems can be overcome by analyzing the data using different techniques. One of

these is to take the difference of the value at the current time step from the value at the last time step as the Y

value instead of the measured value.

Second, violating the equal variances assumption leads to heteroescedasticity. Here the variance changes for

changing values of X. A plot of residuals where the spread gradually increases toward lower or higher X's can

also occur. The residual plot from the replicated data regression in the module on Linear Correlation,

Regression and Prediction shows a hint of this. Notice how the residuals start to spread slightly as X increases

(Fig. 3).

Fig. 4 Residuals, or deviation of each data point from the calculated regression equation.



Multicollinearity

The third problem is multicollinearity, as we discussed in the �rst part of the unit. Here two or more

independent variables (x) are strongly correlated (for example the GDD and hours of sunlight variables). The

individual effects are hard to separate and lead to greater variability in the regression. Large R2 values with

insigni�cant regression coe�cients are seen with this problem. Eliminating the least signi�cant variable, after

testing, will often solve this problem without changing the R2 very much. The example just discussed showed

such a property, where the X1 and X2 values were strongly correlated (r=.905). The insigni�cant coe�cient can

be eliminated, usually solving the problem.

Fig. 5 Residuals, or deviation of each data point from the calculated regression equation.



Polynomial Functions

Polynomial Functions

A set of functions which can be useful for describing quantitative responses are the various orders of

polynomial functions. A horizontal line is a polynomial function of order 0. Linear relationships are polynomial

functions of the �rst order. The highest exponent of X in the function determines the order of the polynomial (0

for a horizontal line, 1 for simple linear regression equation). Each order has a distinctive shape. First order

polynomials produce a straight line. Second order polynomials produce a parabola. Graphs of the �rst 4 orders

have similar shapes to those in Fig. 6.

As with the other functions, an in�nite number of curves may be created by varying the coe�cients. A

polynomial function can usually be �t to most sets of data. The value of such relationships can be questioned

at very high orders, though. Important in most functional relationships is the physical or biological relationship

represented in the data. Higher order relationships sometimes produce detailed equations which have a

relatively limited physical or biological relevance.

Polynomial functions have a general form given in the below equation.

These equations, which are linear in the parameters (a, b, c, . . .), are used to �t experimental data similar to the

methods described earlier in this unit.

Fig. 6 Graphs resembling the orders of polynomials 1-4.

Equation 9



Polynomial Relationships

ADDING ORDERS OF FUNCTIONS

Polynomial equations are generally �t sequentially, with terms x, x2, x3, etc. successively included.

Polynomial relationships are calculated to reduce the variability around the regression line, whatever the order.

The usual technique is to begin with a linear equation. If the deviation from this line is signi�cant, add a term to

reduce the sum of squares about the line. Adding another order to the polynomial reduces the sums of squares.

When the reduction of the sum of squares by adding another order becomes small, the limit of the equation has

been reached. Enough terms can be added to �t any data set. Generally, a third order equation is the upper limit

of terms in an equation to have any relevance. More terms often simply �t the error scatter of the data into the

equation without adding additional relevance.

Each additional order should be tested for signi�cance using the hypothesis H0: highest order coe�cient = 0.

This can be tested using the below equation.

where:

Numerator df = 1

Denominator df = residual df for the higher order

For additional terms, test each using this approach.

Equation 10



Polynomial Regression

Polynomial Example

Let's use the example from the module on Linear Correlation, Regression and Prediction. The data set was

approximated using a linear model (Fig. 7).

The R2 value is 0.62 with a regression SS of 242.1 and a residual SS of 149.2. The linear regression is

signi�cant, but there is scatter about the regression line. Fitting the same data with a second order polynomial

produces:

Fig. 7 Linear regression applied to runoff from a �eld based on rainfall data.

Table 4 2nd Order Polynomial

  df SS MS

Regression 2 362.2 181.10

Residual 7 29.1 4.15

Total 9 391.3  



critical F = 12.25; P = 0.01

with df 1,7; p <<< 0.01



Variance in the Data

Here you can see that the R2 value increased, indicating that more of the variance in the data is explained by the

regression equation. Testing the reduction using the F-test produces a very signi�cant decrease in unexplained

variability as the residual SS drops from 149.2 to 29.1. The regression line follows the data closely (Fig. 8).

Going a step further to assure that most of the variance is explained by the regression equation, we �t a third

order polynomial (Table 5).

Fig. 8 Linear regression applied to runoff from a �eld based on rainfall data.

Table 5 3rd Order Polynomial

  df SS MS

Regression 3 365.6 121.90

Residual 6 25.7 4.28

Total 9 391.3  



critical F = 3.29; P = 0.01

with df 1,7 (not signi�cant) even at P = 0.10



Calculating Polynomial Equations

Here, you see that not much more information about the response has been gained. The R2 increases little and

very little additional variability is explained in the third order regression. The F-value for third order-regression is

not signi�cant at even the 0.10 level. The second order polynomial, therefore, is the best polynomial equation

for describing the response. Physically, we are trying to �t a relationship of rainfall to run-off. The negative run-

off or in�ltration after rain begins makes sense. The X2 relationship may be explainable since we are

considering a volume of run-off from a depth of rainfall. The equation does �t the data well. Again, this �ts only

the data gathered. Use of this relationship beyond the scope of this data set would be improper.

Fig. 9 Third order polynomial regression for the rainfall data.



Ex. 5: Non-Linear Multiple Regression Analysis (1)

R CODE FUNCTIONS

• anova

• summary

• lm

• install.packages

• library

• cor

• pcor

You are a maize breeder in charge of developing an inbred line for use as the ‘female’ parent in a hybrid cross.

Yield of the inbred female parent is a major factor affecting hybrid seed production; a high level of seed

production from the hybrid cross leads to more hybrid seed that can be sold. Only 3 lines remain in your

breeding program, and your boss wants you to determine 1. Which is the best model to use to analyze the data,

and 2. Which of the three lines should be selected for advancement in the breeding program. The three-variable

data-set relating the yield (per plot) of the 3 inbred lines (evaluated in 3 reps) to the amount of N and level of

drought applied to each plot can be found in the �le ex5.csv.

Helpful questions to ask:

1. Should “line” be classi�ed as a numeric or factor?

2. Should “rep” be classi�ed as numeric or factor?

3. Should “rep” be included in the model?

4. Should the interaction between N and drought be included?

5. What higher orders of N and drought, if any, should be included in the model?

https://pbea.agron.iastate.edu/files/13ex51csv
https://pbea.agron.iastate.edu/files/13ex51csv


Ex. 5: Non-Linear Multiple Regression Analysis (2)

Answers:

1. “line” should be a factor

2. “rep” should be a factor

3. “rep” should be included in the model (see anova and regression analysis below)

4. Yes (see anova and regression analysis below)

5. N2,drought2 should be included. N3 has a slightly higher R2
Adj value, but it is only ~0.006 better than the

model including both N and drought as second order variables.

Students should test models on their own to �nd the best one.



Ex. 5: Non-Linear Multiple Regression Analysis (3)

The correct model is: yield ~ N + drought + line + rep + N*drought + N2 + drought2 “rep” and “line” should be

factors, as the numeric values (1 to 3) are identi�ers only and don’t indicate a treatment amount.

The model including drought and N as a 2nd order variable is the best. The model that has drought as a 2nd

order polynomial and N as a 3rd order polynomial technically has a has a better R2
Adj, however since the

difference between the R2
Adj values of the 2 models is incredibly small AND since the coe�cient N2 is not

signi�cant in the model with the higher order polynomial , we choose the simpler of the 2.

data$line<-as.factor(data$line)

data$rep<-as.factor(data$rep)

summary(1m(data,yield~N+drought+line+rep+N*drought+I(N^2)+I(drought^2)))



Ex. 5: Non-Linear Multiple Regression Analysis (4)

R outputs,

Call:

lm(formula = yield ~ N + drought + line + rep + N * drought + I(N^2) + I(drought^2), data = data)

Residuals:

     Min        1Q    Median       3Q       Max

-2872.09   -550.53     11.45   517.71   2123.26

Coe�cients:

               Estimate Std. Error t value Pr(<|t|)

(Intercept)   7.997e+03  9.944e+01  80.422  < 2e-16  ***

N             6.936e+01  1.504e+00  46.120  < 2e-16  ***

drought       7.172e+02  2.118e+01  33.864  < 2e-16  ***

line2         6.026e+02  7.264e+01   8.296 5.31e-16  ***

line3         8.256e+02  7.264e+01  11.366  < 2e-16  ***

rep2         -2.080e+02  7.264e+01  -2.864  0.00431  **

rep3         -8.158e+02  7.264e+01 -11.231  < 2e-16  ***

I(N^2)       -2.730e-01  6.454e-03 -42.296  < 2e-16  ***

I(drought^2) -1.920e+02  5.069e+00 -37.869  < 2e-16  ***



N:drought     4.716e-01  1.587e-01   2.971  0.00306  **

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error:  800.7 on 719 degrees of freedom

Multiple R-squared:   0.9211, Adjusted R-squared:   0.9201

F-statistic:  933.1 on 9 and 719 df, p-value: < 2.2e-16



Ex. 5: Non-Linear Multiple Regression Analysis (5)

anova(m2)

Analysis of Variance Table

Response: yield

               Df      Sum Sq     Mean Sq     F value     Pr(>F)

N               1   254135518   254135518    396.4202  < 2.2e-16  ***

drought         1  2881646910  2881646910   4495.0156  < 2.2e-16  ***

line            2    88656727    88656727     69.1468  < 2.2e-16  ***

rep             2    87339382    87339382     68.1194  < 2.2e-16  ***

I(N^2)          1  1146830086  1146830086   1788.9142  < 2.2e-16  ***

I(drought^2)    1   919337101   919337101   1434.0531  < 2.2e-16  ***

N:drought       1     5659813     5659813      8.8286   0.003064  **

Residuals     719   460933695      641076

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Line 3 has the best predicted-yield and should be advanced.



Summary

Multiple Regression

• Effects of several continuous independent variables (Xs) on continuous dependent variable Y

• With just X1 and X2, get plane of best �t.

Multiple Correlation

• Start with all pairwise simple correlations of Y and Xs.

• Partial correlation of Y and X1 holds all other Xs at their average value.

• Total multiple correlation of Y on Xs squared (R2) is coe�cient of determination

Calculating Multiple Regression

• In R, use the REG procedure

• Get prediction equation Y = a + b1X1+...+bkXk from Parameter Estimates

• Get Analysis of Variance for Regression

Testing Multiple Regression

• R2 gives proportion of variation accounted for by Regression

• Overall F-test of all coe�cients equal to zero

• Each regression coe�cient tested in Parameter Estimates or Effect Tests

Problems in Multiple Regression

• Ys not independently distributed

• Unequal variances

• Either of these is seen in residual plots

• Multicollinearity from high pairwise correlations of Xs

Polynomial Regression

• Add successive powers of X: X, X2, X3, ...

• Test for signi�cance with F-test
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Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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