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Introduction

Multivariate datasets: for each unit various variables have been assessed. What information do we want to

extract?

• Group the units based on the various variables into groups.

• Determine how the variables interact, and which of them have the main effects on the units.

• Eliminate variables that eventually overshadow the effects of those variables we are really interested in.

• Reduce the complexity of the dataset so we can use graphical tools to help us in interpretation.

Objectives

• Analysis, graphical display and interpretation of complex datasets



Measures that Describe Similarities/Dissimilarities Between Units
or Variables

Initial Example

If we are asked to describe a group of diverse objects as given in Figure 1, our mind would automatically start

to look for attributes, these objects have in common and others that allow us to divide them into groups.

Common: these are all letters

Different:    Letters: A & B

Font size: large & small

Case: upper & lower

Color: red & black

We are still able to say, which of the objects are identical = highest similarity (for example the 2 black

uppercase “A” in large font - positions 1 and 4 in �gure 1, or the 2 red lowercase “a” in small font – positions 2

and 9, but we have to take a closer look to �nd the objects pairs, that share the least of the variables = lowest

similarity.

Fig. 1 Initial example.



Data Sheet for Initial Example

Even in a very small dataset, it would be nice to have algorithms at hand to compute similarities/dissimilarities

between the objects.

Figure 2 (above) shows a datasheet we can create based on the objects in Figure 1. We have 9 objects and 4

variables. These are categorical/ordinal variables. For this example, we can transform the variables into binary

variables,since each of them has only two states.

Fig. 2 Data sheet for the initial example and conversion to binary variables.



R Output for Initial Example

There are many different approaches, how to compute the dissimilarity between objects. Without looking into

detail, let’s just try out one and use R to calculate the distance matrix for the example.

## load packages

library("cluster")

#load the binarey datasheet (Ex1.csv)

Ex1_data <- read.csv("Ex1.csv", header = T)

Ex1_data

Letter Font Case Color

1      1    1    1      1

2      1    0    0      0

3      0    0    1      1

4      1    1    1      1

5      1    0    1      0

6      0    1    0      1

7      0    0    1      0

8      0    0    0      0

9      1    0    0      0



#calculate the simple matching coe�cient with the function daisy

daisy(Ex1_data, metric = "gower")

Dissimilarities:

      1     2     3     4     5     6     7     8

2  0.75

3  0.50  0.75

4  0.00  0.75  0.50

5  0.50  0.25  0.50  0.50

6  0.50  0.75  0.50  0.50  1.00

7  0.75  0.50  0.25  0.75  0.25  0.75

8  1.00  0.25  0.50  1.00  0.50  0.50  0.25

9  0.75  0.00  0.75  0.75  0.25  0.75  0.50  0.25

Metric : mixed ; Types = I, I, I, I

Number of objects : 9 

|

R output for the initial example.

The simple matching coe�cient computes the percentage of variables that are different between two objects. If

you have a look into the dissimilarities matrix, you can see, that for example the object pair 1-4 has a

dissimilarity value of zero (d14 = 0) – these are the 2 identical large, black, uppercase “A”, we identi�ed earlier.



You can also see, that for cases, where the dissimilarities are expressed as numbers between 0 and 1, there is a

simple relation between similarities (sij) and dissimilarities (dij): 

Furthermore a dissimilarity dij is also called a distance or metric, if it ful�lls certain properties:

[1] dij >= 0 and dij = 0 if and only if i = j

[2] dij = dij

[3] djk =< dij + djk



Calculating Similarities/Dissimilarities for Different Data Types

Calculating Similarities and Dissimilarities in Binary Data

In molecular marker data based on allelic non-informative marker systems (as for example AFLP data), only the

presence or absence of a speci�c band can be scored.

Similarity coe�cients calculated in a binary marker data set depend on the question, if absences of the marker

alleles in both observed objects should be taken into account or not and also, if alleles present in both observed

objects should be counted once or twice.

The �rst step is to determine, which bands are common or different in two objects:

aij - number of bands present in both objects i and j

bij - number of bands present in object i but not in j

cij - number of bands present in object j but not in i

dij - number of bands absent in both objects i and j



Different Coefficients

Simple matching coe�cient:

The simple matching coe�cient computes the percentage of variables that are different between two objects

related to all variables observed.

Jaccard’s coe�cient:

The Jaccard’s coe�cient takes only those observations into account, where an observation was made – if for

example a marker band is absent in both objects observed, then the observation is considered as non-

informative and not included in the calculation.

Dice coe�cient:

The Dice coe�cient is similar to the Jaccard’s coe�cient as non-informative observations are not included, but

a band present in both objects is counted twice.



Second Example

CALCULATING DISSIMILARITIES FOR MARKER DATA

Fig. 3 Partial AFLP gel, 4 polymorphic marker bands are found within 11 genotypes analyzed.



Marker Data for Second Example

First we score the presence/ absence of the marker bands in each genotype.

Then we can calculate the dissimilarities dSM, dJ and dSOR using R (Ex2.csv).

For the simple matching coe�cient, we can use the function daisy{cluster}; the other coe�cients can be

calculated with the function betadiver{vegan}. Encoding for the different diversity measures can be found in:

Koleff et al. (2003) Journal of Animal Ecology, 73, 367-382.

Table 1 Marker data for the second example. The 0-1 matrix is saved as a .csv in Excel (Ex2.csv).

  m1 m2 m3 m4

1 0 1 1 1

2 0 1 1 1

3 1 0 1 0

4 0 0 0 1

5 0 0 0 0

6 0 0 0 1

7 0 1 1 1

8 0 1 1 1

9 0 1 1 1

10 1 1 1 1

11 0 1 1 1

https://pbea.agron.iastate.edu/files/ex2csv
https://pbea.agron.iastate.edu/files/ex2csv


Dissimilarity Matrices

Fig. 4 Dissimilarity matrices for the three coe�cients.



Calculating Similarities and Dissimilarities in Categorical Data

Categorical variables are non- numerical and it is not possible to apply any order to them.

In order to calculate distances between objects described by categorical variables, the variables can be

transformed into binary variables, as we did already in example 1, for the special case when only two states for

each variable are possible. If there is more than 2 states, we will have to proceed a bit differently.

In the example in Table 2 (Ex3.csv), only the variables “origin”, “on noxious weed list” and “Growth Form” can

readily be transformed into a binary variable. “Species name” and “Flower” have 4 different stages each.

Table 2
Data extracted from

http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5186034.pdf

Common Name Species

Name

Origin On noxious

weed list

Flower Growth

form

Musk thistle Carduus nonnative 1 Purple biennial

Scotch thistle Onopordum nonnative 1 Purple biennial

Canada thistle Cirsium nonnative 1 Purple perennial

Bull thistle Cirsium nonnative 0 Purple biennial

Anderson's thistle Cirsium native 0 Red perennial

Snowy thistle Cirsium native 0 Red biennial

Douglas or swamp

thistle

Cirsium native 1 White biennial

Elk or Drummond

thistle

Cirsium native 1 White biennial

Perennial sow-

thistle

Sonchus nonnative 1 Yellow perennial

https://pbea.agron.iastate.edu/files/13-ex3csv
https://pbea.agron.iastate.edu/files/13-ex3csv
http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5186034.pdf
http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5186034.pdf


Creating Placeholder Variables

One way to handle this would be to annotate these variables the following way—we create a set of binary

placeholder variables, which de�ne the states the original variable can assume:

For example, Flower—to describe the 4 states of �ower color we will need two binary variables Fl1, and Fl2:

  Purple Red White Yellow

Fl1 1 1 0 0

Fl2 1 0 1 0

Same for species names:

  Carduus Onopordum Cirsium Sonchus

Sn1 1 1 0 0

Sn2 1 0 1 0

How to estimate the number of placeholder variables (N) needed to represent the categorical data with X

states:

, rounded up to the integer



Binary Placeholder Variables

Table 3 Binary placeholder variables for example 3 (Ex3-tr.csv)—Flower and Species name.

Common Name Fl1 Fl2 Sn1 Sn2

Musk thistle 1 1 1 1

Scotch thistle 1 1 1 0

Canada thistle 1 1 0 1

Bull thistle 1 1 0 1

Anderson's thistle 1 0 0 1

Snowy thistle 1 0 0 1

Douglas or swamp thistle 0 1 0 1

Elk or Drummond thistle 0 1 0 1

Perennial sow-thistle 0 0 0 0

https://pbea.agron.iastate.edu/files/ex3-trcsv
https://pbea.agron.iastate.edu/files/ex3-trcsv


Calculating Similarities or Dissimilarities in Quantitative Data

Quantitative variables can be discrete values (for example ear row counts, pod numbers) or continuous values

(for example yield (t/ha) or temperatures (°C)).

We will use the data in Table 4 (Ex4.csv) to calculate a few of the most commonly used

similarities/dissimilarities in quantitative datasets.

Table 4
Data extracted from the Season 2014 Corn Variety Report of the University of Michigan, 

http://www.varietytrials.msu.edu/wp-content/uploads/2013/01/2014-MSU-Corn-Bulletin-E-431.pdf

Brand/Hybrid %H20 t/ha %SL %Sd

AGRIGOLD A6408VT3PRIB 24.7 12.93 10.7 100

AGRIGOLD A6499STXRIB 35.4 11.74 1.7 99

DIARYLAND SEED DS-9307SSX 22.7 13.25 5.1 95

DEKALB DKC57-75 24.7 12.97 1.0 99

DEKALB DKC62-08 GENSRIB 32.4 12.78 0.2 100

GOLDEN HARVEST G07F23-3111 24.7 13.28 5.9 100

GOLDEN HARVEST G12J11-3011A 29.9 12.34 5.5 99

GREAT LAKES 5755STTXRIB 25.5 14.00 10 99

NK Brand N61P-3000GT Brand 23.8 12.99 5.3 96

NK Brand N70J-3011A 29.2 12.58 9.5 97

NuTech/G2 Genetics 5Z-707TM 24.2 13.68 0.9 88

RENK RK776SSTX26.0216.4 26.0 13.58 1.9 99

RUPP XRJ07-20 24.7 13.11 8.7 99

SELECT 4746 DP RIB 25.2 13.96 1.8 99

Unity Seeds 5512 SS-RIB 34.5 12.77 0.2 99

%H20 - moisture content at harvest; t/ha yield of shelled corn corrected to 15.5% moisture; %SL - percent

os stalk lodging (plants broken below the ear and/or 45 degrees off vertical at harvest); %Std - percent

stand of target population

https://pbea.agron.iastate.edu/files/ex4csv
https://pbea.agron.iastate.edu/files/ex4csv
http://www.varietytrials.msu.edu/wp-content/uploads/2013/01/2014-MSU-Corn-Bulletin-E-431.pdf
http://www.varietytrials.msu.edu/wp-content/uploads/2013/01/2014-MSU-Corn-Bulletin-E-431.pdf


Euclidean Distance

The Euclidean distance calculates the square root of the sum over all squared differences between two objects.

In our example, the distance between the two hybrids from AGRIGOLD would be calculated as:

You can already see that the unit the respective variable is measured in, has a great in�uence on the results of

the Euclidean Distance. Some standardization of the data set is advisable and we will come to that later.



Manhattan Distance

The Manhattan distance describes the distance between two points in a grid, allowing only strictly horizontal or

vertical paths. The distance is the sum of the horizontal and vertical components of the path between two

points.

In our example, comparing the two �rst hybrids of table 3:

d12 = (24.7-35.4) + (12.93-11.74) + (10.7-1.7) + (100-99) = 21.89

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/binary-placeholder-variables
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/binary-placeholder-variables


Euclidean and Manhattan Distance Results

Below are the results for Euclidean and Manhattan distances generated in R:

Fig. 5 R output: Euclidean distances, Manhattan distances for the example 4 data.

Fig. 6 R output: Euclidean distances, Manhattan distances for the example 4 data.



Correlation

Correlation (linear correlation coe�cient, Pearson correalation coe�cient):

The correlation coe�cient can obtain values between -1 and 1; it measures similarity.

The function cor() in R calculates similarities between columns/variables (which is the more common

application for the function)—if you want to compare the rows/objects, you will have to transpose your data

matrix �rst.



Calculating the Correlation

Fig. 7 Calculating the correlation between objects after transposing the data matrix.



Preparing Data for Statistical Analysis

Preparing Data for Statistical Analysis

If we have a closer look at the data from Example 4 (Table 4) and the distances we calculated, we realize, that

the values depend a lot on, in what unit for example the yield is measured. Changing the data from t/ha into

kg/ha, would result in completely different results.

The Euclidean distance between the �rst two hybrids would change from 14.0679 to a value of 1190.08256! As

the numerical value of yield is then much larger than the value of the other variables, yield would have a much

larger weight than the other variables.

The example shows, that raw data cannot just be used for statistical analysis. It has to be prepared before any

statistical analysis is applied.

Real data are never perfect, there are missing values, outliers, or other inconsistencies, which have to be dealt

with.

As an example how to prepare a raw dataset for statistical analysis we will use the data collected in the �le

“RawDataEarPhenotypes.xlsx”:

Four inbred lines, their respective F1 (6), F2 (6), and the 2 possible BC1 (2 x 6) were grown in a �eld trial with

three replications. From each of the 3 x 28 plots, 10 randomly sampled ears were evaluated for 14 different ear

phenotypes: row number (RowNo.), Kernels per row (K/Row), ear length (EarL), cob length (CobL), ear diameter

at the base (EarDB), middle (EarDM), and tip (EarDT), cob diameter at the base (CobDB), middle (CobDM), and

tip (CobDT), ear weight (EWt), grain weight (GrWt), cob weight (CobWt), and the 300 kernel weight (300KWt). So

we expect a datasheet with 10 x 28 x 3 = 840 rows with data for the 14 variables measured…

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/calculating-similarities-or
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/calculating-similarities-or
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/calculating-similarities-or
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/mulivariate-analysis/calculating-similarities-or
https://pbea.agron.iastate.edu/files/rawdataearphenotypesxlsx
https://pbea.agron.iastate.edu/files/rawdataearphenotypesxlsx


Looking for Obvious Inconsistencies

Generating consistent data - looking for obvious inconsistencies:

The following inconsistencies can be found in the dataset (Fig. 6):

1. There are 832 instead of the expected 840 observations: in two replication of inbred line PHG84, 6

instead of 10 cobs were measured!

2. Using the excel function Min() and Max(), we observe in the 300KWt variable an unexpected high value

for the 300 kernel weight of 8706—obvious a typing mistake, if we correct this value to 87.6, another

obvious too high value, 998.2 shows up, we correct it to 99.82 In CobL the value of 183 as a maximum

value is too high, we change it to 18.3 In EWt the value of 735.4 is too high, we change it to 73.54

3. The Min() value in 300KWt column also seems to be very low—what happened?—obviously not all cobs

had the required number of 300 seed—so the seed were counted and weighed, and in an additional

column #Kernels, the number of seed weighed is given. There are different ways to handle this problem

a. Eliminate the value generated with less than 300 seed completely form the data set = missing

values.

b. Replace the value generated with less than 300 seed completely form the data set with the mean

300KWt calculated based on the available correct data.

c. Calculate an estimate for the weight of 300 seed based on the available information—problem, if

only a few seeds could be weighed this estimate can be very insecure—we might consider to do

this estimate only for cases, where a certain number of seed (for example more than 150) are

available.

The column “ca300KWt” is the result of applying �rst solution 3c and then 3a to the 300 kernel weight data.

4. Once you start reading the data into a program like R, you will realize, that there is another small typo in

the EarL—one value has 2 decimal points: 21..9 



Typical Data Clean-up - Example

This is an example for a typical data clean-up.

Fig. 8 Extract from the raw data �le - "RawDataEarPhenotypes.xlsx" - colored are inconsistencies in the data set that have

to be dealt with before any statistical analysis.



Missing Values

Generating consistent data - missing values:

Some computer programs tolerate missing values, but eventually it can become necessary to replace them by

estimates for the real value.

One way to go is to replace the missing value with the mean over all values or better the mean over the values

within the group of your missing value.

In order to make our data set a bit more manageable we continue with the means over the 10 cobs for all

repetitions and variables: “MeanEarPhenotypes.csv”

In this dataset only the variable ca300KWt still has missing values—4 in total. We replace these with the mean

calculated with the two remaining values within each pedigree (Fig. 9).

Fig. 9 The �nal cleaned dataset is saved as a csv �le: "MeanEarPhenotypes.csv".

https://pbea.agron.iastate.edu/files/meanearphenotypescsv
https://pbea.agron.iastate.edu/files/meanearphenotypescsv


Cluster Analysis

Explanation of Cluster Analysis

Cluster analysis is an exploratory technique, which allows us to subdivide our sample units into groups,

such that similarities of sample units within a group are larger than between groups. Cluster analysis is applied,

if we have no idea how many groups there are. This is in contrast to another technique called the Discriminant

Analysis, where the groups are given and the sample units are distributed to the groups so they �t best.

Besides the grouping of sample units, cluster analysis may also reveal a natural structure in the data and

eventually allow to de�ne prototypes for each cluster in order to reduce complexity of datasets.

There are several algorithm to perform the task of grouping, we will have a closer look at 2 of them:

1. Agglomerative hierarchical clustering

2. K-means clustering



Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering methods produce a hierarchical classi�cation of the data.

There are two ways to do so: (1) starting from a single “cluster”, containing all units of the datasets, in a series

of partitions the units are divided in n clusters, containing each one individual unit, (2) starting out from n

individual “cluster”, a series of fusions are performed until only one cluster containing all units is formed

(=agglomerative techniques).

Hierarchical classi�cations can be represented in 2 dimensional diagrams called dendrogram, which will show

the stage at which a fusion between units has been made.



Hierarchical Clustering Example

Dataset: MeanMeanEarPhenotypes.csv

The dataset contains the means over all repetitions done in the 4 inbred lines, the 6 F1, the 6 F2 and the 2 x 6

BC1 families. We will perform the cluster analysis based on the Euclidean distance matrix calculated with the

raw (non-standardized) data (Fig. 10).

Fig. 10 R-code to prepare the data for the cluster analysis. See �le: Example-HierarchicalClusterAnalysis.txt

https://pbea.agron.iastate.edu/files/meanmeanearphenotypescsv
https://pbea.agron.iastate.edu/files/meanmeanearphenotypescsv
https://pbea.agron.iastate.edu/files/example-hierarchicalclusteranalysistxt
https://pbea.agron.iastate.edu/files/example-hierarchicalclusteranalysistxt


Different Agglomeration Methods

We will be using the hclust() function of the stats package of R:

The function allows to choose between different agglomeration methods, which basically differ in how to

calculate the distance between a group of units. Given the distance matrix, one can calculate the distance

between two groups of units (cluster) based on the minimal distance between two individuals of the group

(Fig 11a) or the maximal distance between the two individuals of a group (Fig 11b).

Fig. 11 Illustration of the single and complete agglomeration method.



Cluster Analysis Results

Alternatively the distance between two cluster can be calculated as the average distance of the units within

these clusters, this method is also called Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and

widely applied.

All clustering methods partition the inbred lines clearly apart from the other families (F1, F2 and BC2) (Fig. 13).

The methods “complete” and “average” return a similar partition of the units, although a clear partitioning in F1

versus F2 versus BC1 is not achieved. By choosing a height at which to cut off the researcher decides, how

many groups or clusters he wants to form within the dataset.

Fig. 12 Results of the cluster analysis using different agglomeration methods.

Fig. 13 R-code for generating the cluster and dendrogram (Example-HierarchicalClusterAnalysis.R).



Deciding a Cut-off Height

Deciding on a cut-off height, we can divide our dataset in 3, 4 or more groups. In Figure 14, the most obvious

cut-off height will be at the level of 3 cluster, dividing inbred lines against mainly F1 and the rest (F2, BC1).

Fig. 14 Dendrogram after UPGMA.



K-means Clustering

The k-means clustering algorithm tries to partition your dataset in a given number of groups with the goal to

minimize the “within group sum of squares” over all variables. Checking each possible partition of your n

sample units into k groups for the lowest within-group sum of squares is not practical, as the numbers of

calculations necessary rise exponentially. In our example dataset, it would be more than 2,375,000 possible

partitions to check, if we assume k=3 groups. The k-means clustering algorithm therefore starts out making an

initial partition in the number of groups requested and rearranges these so that the sum of squares is

minimized. The technique is called an unsupervised learning technique and can result each time it is initialized

in slightly different results. For k-means clustering it is recommended to use standardized datasets.



K-means Clustering Example

Dataset: MeanMeanEarPhenotypes.csv

To prepare the dataset for the k-means cluster analysis, we remove the �rst two columns (Pedigree and Type)

and standardize the data (Fig. 16)—see �le Example-kmeansClusterAnalysis.txt

Fig. 15 Preparing the data for analysis with k-means - data standardization with the function

data.Normalization{clusterSim}.

https://pbea.agron.iastate.edu/files/meanmeanearphenotypescsv
https://pbea.agron.iastate.edu/files/meanmeanearphenotypescsv
https://pbea.agron.iastate.edu/files/example-kmeansclusteranalysistxt#overlay-context=course-materials/quantitative-genetics/components-variance
https://pbea.agron.iastate.edu/files/example-kmeansclusteranalysistxt#overlay-context=course-materials/quantitative-genetics/components-variance


K-means Cluster Analysis

If we compare the clustering results, depending on

the number of groups we allow, we see, that all

k-means clustering analyses clearly put the inbred

lines into a single group (Fig. 16).

F1, F2 and BC1 are distributed over the remaining

groups. It looks like the “k=3 cluster analysis” is

able to assign the F1 and BC1 at least to some

extent mainly to their individual group, but overall,

k-means gives us here the same result as the

hierarchical cluster analysis.

Fig. 16 R-code for k-means cluster analysis with k=3, k=4

and k=5 groups, and assignment of the Types into these

groups.



Distribution of Types

The graphics below show the data for the variables GrWt and ca300KWt, as an example how the types are

distributed compared to the group assignment though k-means cluster analysis.

Fig. 17 Graphical display based on the Grain Weight and 300 Kernel Weight, how the types are distributed compared to the

k-means assigned groups, R code to generate plots is given above.



Principal Components Analysis

Principal Components Analysis

The more variables there are in a multivariate dataset, the more di�cult it becomes to describe and extract

useful information from it. Also displaying the data in a graphic becomes harder when more than 3 variables are

included. In this case a Principal Component Analysis (PCA) helps to reduce the dimensionality of our dataset,

by changing the set of correlated variables we want to describe into a new set of uncorrelated variables. The

new variables are sorted in order of importance, the �rst one accounting for the largest portion of variation

found in the original dataset, the later for a less and less large portions of the variation. The hope is, that a few

of these new variables will be su�cient to describe most of the variability found in your original dataset, so we

can replace our data with only a few variables and end up with less complexity and dimensionality.

In our �rst example we will look at a dataset that has only two variables for an easy demonstration of PCA. We

will use the following dataset: MeanMeanEarPhenotypes.csv, and create a subset consisting of the columns

GrWt and ca300KWt only.



PCA Step by Step....

Dataset: MeanMeanEarPhenotypes.csv, R-code: Example-PCA1.R

At �rst we will have to standardize our data if the scales in your dataset are similar, we can use mean centering

for standardization and do the subsequent calculation based on covariance. If the scales in a dataset are very

different (weights, temperatures…) it is recommended to divide the mean center values by the standard

deviation and use the correlation for subsequent calculations.

Head of the standardized data for the variables GrWt and ca300KWt

head(PCAdata)

         GrWt     ca300KWt

1  -0.3157250   0.23311021

2  -0.2982722   1.18856570

3  -0.2955165  -0.76213572

4  -0.1779398   0.75378250

5   0.7562440  -0.02213083

6   0.1371291  -0.83589358

#display data in a plot

plot(PCAdata[c("GrWt", "ca300KWt")]

+         col-data$Type,

+         pch-16

+         main-"Distribution of data for PCA example")

legend("bottomright", c("Inbred", "F1", "BC1"), pch = 16, col=c("blue","red","green","black"))





Distribution of Data

Looking at the scatterplot (Fig. 18), we see, that there is some correlation between the two measures. If we

want to know which of the variables contributes the most to the overall variance of the dataset, we have to

calculate the Eigenvalues for the covariance (or correlation) matrix.

Fig. 18 Scatterplot to display the standardized data for the PCA example.



Eigenvectors Output Matrix

my.eigen$values

[1] 1.6208572  0.3791428

rownames(my.eigen$vectors) <- c("GrWt", "ca300KWt")

colnames(my.eigen$vectors) <-c("PC1", "PC2")

my.eigen$vectors

                   PC1         PC2

GrWt        -0.7071068   0.7071068

ca300KWt    -0.7071068  -0.7071068

sum(my.eigen$values)

[1] 2

var(PCAdata$GrWt) + var(PCAdata$ca300KWt)

[1] 2

|

In the output matrix of the Eigenvectors, the �rst column is also our �rst Principal Component, the second

column is the second Principal Component. The values are a measure of the strength of association with the

Principal Component While values in the �rst Principal Component trend together, in the second they trend

apart. We will try to visualize this in a graphic.



Display of Principal Components

PC1.slope <- my.eigen$vectors[1,1]/my.eigen$vectors[2,1] 

PC2.slope <- my.eigen$vectors[1,2]/my.eigen$vectors[2,2]

abline(0, PC1.slope, col="green")

abline(0, PC2.slope, col="red")

Graphical display of the Principal Components. PC1 in green, PC2 in red—the two components are orthogonal to

each other.

Fig. 19 Distribution of data for PCA example



Percentage of Overall Variance

Finally we want to ask how much (or what percentage) of the overall variance in our data is represented by the

�rst Principal Component:

PC1.slope <- my.eigen$vectors[1,1]/my.eigen$vectors[2,1]

PC2.slope <- my.eigen$vectors[1,2]/my.eigen$vectors[2,2]

abline(0, PC1.slope, col="green")

abline(0, PC2.slope, col="red")

PC2.var <-100 * (my.eigen$values[1]/sum(my.eigen$values))

PC2.var <-100 * (my.eigen$values[2]/sum(my.eigen$values))

PC1.var

[1] 81.04286

PC2.var

[1] 18.95714

|

PC1 explains ca. 81% of the variance, PC2 explains about 18%.



Calculate the PCA Scores

By multiplying the original variable with the respective Eigenvectors, we calculate the PCA scores for each

sample unit in our dataset. Plotting the scores shows, that the plot is rotated such, that the Principal

Components form the x and y axis (Fig. 20). The relations between the sample units is unchanged, although one

should be aware, that a Principal Component per se has no biological meaning.

It is possible to plot the variables as vectors into the graphic (Fig. 20)—how to do this and how to interpret the

arrows will be shown in the next example.

Fig. 20 Plotting the PCI scores.



Perform a Principal Component Analysis

PERFORMING A PRINCIPAL COMPONENT ANALYSIS
USING INBUILT R FUNCTIONS

Dataset: MeanMeanEarPhenotypes.csv, and create a subset consisting of the columns: RowNo., EarDM, EarL,

CobWt, ca300KWt (Fig. 21), we will use the standardized data.

R-code: Example-PCA2.R

Fig. 21 Preparing an example dataset with 5 variables.



Generate a Scatterplot Matrix

With the cpair() function we can generate a scatterplot matrix of our dataset (Fig. 22).

Not unsurprising, for example, there is a strong correlation between the RowNo. and ear diameter.

Fig. 22 Scatterplot matrix for the 5 variables dataset.



Calculate the Principal Components

To calculate the Principal Components we will use the function prcomp() {stats}.

PCA2 <- prcomp(PCAdata, center=T, scale=T)

class(PCA2)

[1] "prcomp"

1s(PCA2)

[1] "center"  "rotation"  "scale"   "sdev"    "x"

summary(PCA2)

Importance of components:

                           PC1     PC2     PC3      PC4      PC5

Standard deviation      1.7858  1.0466  0.7404  0.33744  0.23121

Proportion of Variance  0.6378  0.2191  0.1096  0.02277  0.01069

Cumulative Proportion   0.6378  0.8569  0.9665  0.98931  1.00000

Looking at the results of prcomp 5 vectors are listed note that “x” stands for the Principal component scores. In

the summary each Principal component is assigned its standard deviation, the proportion of the overall

variance, which is explained with this component as well as a cumulative proportion. The �rst three

components explain already more than 96% of the overall variance in the dataset. As the main goal of the PCA

is to reduce the complexity of the dataset, we could ask ourselves, how many Principal components we have to

keep.



Loadings of the Principal Components

In order to see which variable contributes mainly to the Principal Components, you will have to look at the

rotation data, or loadings:

PCA2$rotation

                  PC1          PC2         PC3         PC4         PC5

RowNo.      0.4766670  -0.40713953   0.2610523   0.6767104  -0.2845007

EarDM       0.4964644   0.01002647   0.5805497  -0.3360285   0.5508806

EarL        0.4595622   0.22644933  -0.6767696   0.2657527   0.4570357

CobWT       0.5197882  -0.18893398  -0.2894435  -0.5855696  -0.5171605

ca300KWt    0.2119776   0.86438506   0.2302587   0.1250267  -0.3731665

While all variables contribute almost equally to the �rst component, the ca300KWt has a strong in�uence on the

second component, in the third components variables that measure the ear dimensions are prevalent. This can

also be shown in a simple graphic (Fig. 23).

Fig. 23 Loadings of the Principal components 1 and 2 in a dot plot.



Scree Plot

Coming back to the question, how many Principal

Components should be considered - there are two

ways to answer for this question:

1. The Kaiser criterion: as long as the Eigen

Value of a component is larger than 1 keep it

(Fig. 24).

2. Make a decision based on a Scree plot: keep

components, as long as the rate of change is

still larger than 0.

So based on the Kaiser criterion we would keep the

�rst two components, based on the Scree plot

maybe the �rst three components would be kept,

this is up to the researcher.

Fig. 24 R-output for Eigen Values of Principal Components

and Scree plot.



Create a Biplot

Finally we want to create a biplot to visualize the results of our PCA (Fig. 25) the observations are plotted as

points, the variables as vectors:

The biplot reveals, what we saw looking at the loadings of the principal components: although trending in the

same direction as the other 4 variables, the ca300KWt vector is set apart from the other 4. The cosines of the

angles between the vectors re�ect actually the correlation between these variables.

Fig. 25 R-output for Eigen Values of Principal Components and Scree plot.



Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?
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