
Published on Plant Breeding E-Learning in Africa (https://pbea.agron.iastate.edu)

Home > Course Materials > Quantitative Methods > The Analysis of Variance (ANOVA)

The Analysis of Variance (ANOVA)

By Ken Moore, Ron Mowers, M. L. Harbur, Laura Merrick (ISU)

 Except otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://pbea.agron.iastate.edu/
https://pbea.agron.iastate.edu/
https://pbea.agron.iastate.edu/
https://pbea.agron.iastate.edu/
https://pbea.agron.iastate.edu/print
https://pbea.agron.iastate.edu/print
https://pbea.agron.iastate.edu/print/book
https://pbea.agron.iastate.edu/print/book
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

A t-test is appropriate for comparing mean values of two treatments. Many times, however, we want to compare

several treatments. For example, a plant breeder may want to compare 25 genotypes in a �eld trial, or a soil

scientist, three sources of nitrogen fertilizer. What test or procedure should you use in cases like these? In this

lesson we will learn how to use a procedure called the analysis of variance (ANOVA) to test multisample

hypotheses such as these.

Objectives

• The conceptual basis of the analysis of variance (ANOVA)

• How to construct an ANOVA table

• How to calculate the sum of squares (SS) and mean squares (MS) associated with the sources of

variation

• About the linear additive model for the ANOVA



One-Factor ANOVA

Purpose of ANOVA

ANOVA helps determine if treatments are different.

Put most simply, an analysis of variance (ANOVA) compares the variance associated with treatments to that

variance which occurs naturally between experimental units (usually plots). Consider the many potential

sources of variation in �eld plot research: soil properties may vary among plots, insects or other pests may

attack one plot more than another, or carry-over effects from previous crops may vary from plot to plot. What we

are asking when we run an analysis, then, is whether the differences between our treatment means are greater

than these “background” differences between our plots.

https://pbea.agron.iastate.edu/analysis-variance-1
https://pbea.agron.iastate.edu/analysis-variance-1


Variance

Variance arising from many sources can make experimental results di�cult to decipher. Using the analysis of

variance can help solve this by partitioning the total variance into discrete variances associated with our

treatments and by lumping all the unexplained variance into a single term we call error. The name is a little

confusing because the error variance does not really re�ect what we normally think of as errors or mistakes.

The error mean square actually describes the natural and unexplained variation among our experimental units,

which in agronomy are often �eld plots. Think of it this way, if you plant the same crop variety in four different

plots, would you really expect the yields you measured on the plots to be exactly the same? It would be very

unusual if they did. There are a whole lot of characteristics associated with the plots that affect yield in addition

to the variety that was planted. The experimental error sequesters these effects and provides a way for us to

compare the variation associated with varieties with that which occurs naturally among our plots. Your text and

other references often refer to the error variance or variation as the residual.



Example

Let's develop an example to see how an ANOVA is done. An experiment in northwest Iowa compared the yield of

a corn hybrid planted at three plant densities to determine the optimum planting rate. The data are given in

Table 1.

Over the next few pages, we will conduct an analysis of these data.

Table 1 Yield Data (t/ha) for corn planted at three plant populations in northwest Iowa

Population

(plants/m2)

1 (t/ha) 2 (t/ha) 3 (t/ha) mean (t/ha)

7.5 8.64 7.84 9.19 8.56

10 10.46 9.29 8.99 9.58

12.5 6.64 5.45 4.74 5.60



Discussion

Using the data given here only (do not use any preconceived ideas or knowledge of plant populations), are

there differences in the treatments (plant populations)? How do they differ?

Here are some points germane to our discussion:

• We use ANOVA to �nd differences among treatment means. This example problem may be examined

further to estimate the mathematical relationship of yield and plant population. However, in this unit, we

just use this as an example for understanding how to tell if mean yields for each plant population level

differ.

• We assume the plant populations are each randomly allocated to three of the nine plots. This is called a

"completely randomized design" or CRD. You may anticipate that a better design would group all three

treatments into the same area for each replication of the experiment. That is, in fact, how most of these

experiments are designed, and we will later study such a design.

• This ANOVA for a CRD is an extension of the two-sample t-test, now with more than just two treatments.

The samples are assumed to be independent because treatments (plant populations) are assigned to

plots completely at random.

Populations

(plants/m2)

1 (t/ha) 2 (t/ha) 3 (t/ha) mean

(t/ha)

7.5 8.64 7.84 9.19 8.56

10 10.46 9.29 8.99 9.58

12.5 6.64 5.45 4.73 5.60



ANOVA Table

ANOVA Table

The ANOVA table is a tool to separate the variances.

The table is often arranged so that the total variation is listed on the bottom line of the table. The corn

population data (Table 1) can be reorganized by computation formulae to compare variances in an ANOVA table

(Table 2).

Next, we will look at how to get to this point and the use and meaning of each part of the table.

Table 2 ANOVA table for corn planted at three populations in northwest Iowa

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205 5.14

Error 6 3.989 0.665    

Total 8 29.526      

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/linear-correlation-regression-and-prediction/purpose


Sources of Variation

The ANOVA table for a CRD separates variation into sources.

We separate these sources into:

• treatment (in this case, plant populations): the variation associated with the treatments we are

comparing

• error (residual): the variation that occurs within samples (between experimental units receiving the same

treatments)

• total: the total variation in the experiment (the sum of other sources of variation)

Table 2 ANOVA table for corn planted at three populations in northwest Iowa

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205 5.14

Error 6 3.989 0.665    

Total 8 29.526      

https://pbea.agron.iastate.edu/treatment-1
https://pbea.agron.iastate.edu/treatment-1
https://pbea.agron.iastate.edu/treatment-1
https://pbea.agron.iastate.edu/error-0
https://pbea.agron.iastate.edu/error-0
https://pbea.agron.iastate.edu/error-0


Degrees of Freedom

The ANOVA table has degrees of freedom (df) for each source.

The second column in the ANOVA table lists the degrees of freedom for each source of variation. Degrees of

freedom, as you learned in earlier units, are related to the number of samples that occur. The degrees of

freedom associated with the sources of variation are calculated for an experiment with a completely

randomized design using the formulae in Table 3.

Table 2 ANOVA table for corn planted at three populations in northwest Iowa

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205 5.14

Error 6 3.989 0.665    

Total 8 29.526      

Table 3

Source of Variation Degrees of Freedom

Treatment

Error

Total



Study: Degrees of Freedom

 Using the experiment given, �ll in the degrees of freedom for the ANOVA table.

Population

(plants/m2)

1 (t/ha) 2 (1/ha) 3 (t/ha) mean

(t/ha)

7.5 8.64 7.84 9.19 8.56

10 10.46 9.29 8.99 9.58

12.5 6.64 5.45 4.73 5.60

The degrees of freedom (df) for treatments are (t - l) if there are t treatments. This is because the treatment

source of variation is an estimate of variance based on the t treatment means.

The df for error is the sum of the individual df for each independent sample variance. In our example, we could

get an estimate of error variance (the sample variance) for each of the three plant populations, and each has 2

df. The pooled error df is therefore six. It can also be calculated as T (total degrees of freedom) – t (treatment

df)

Fill in the values.

Source of Variation Degrees of Freedom

Treatment

Error

Total

 Check



Sum of Squares

The sum of squares for each source is equal to the numerator in the equation we used to calculate variance in

the Basic Principle module.

where:

T = each treatment total

r = number of replicatons

CF= correlation factor, explained below

The treatment sum of squares describes the distribution of the treatment means around the overall population

mean µ (sometimes called the grand mean). The Correction Factor has been used in the class before. It is

calculated as:

where:

x = each observation

n = number of observations

Equation 1

Equation 2



Sum of Squares Calculations

If you review the modules on “Distributions and Probability” and “Linear Correlation, Regression and Prediction,”

you will note that CF is the second half of the calculation of the sum of squares. We give it special designation

in this lesson because we use the same CF to calculate the Treat SS, and the Total SS. For our own corn

experiment, the CF is:

The Treat SS is therefore calculated as:



Sum of Squares - Total SS

The Total SS is calculated as:

where:

x = each observation

CF = correlation factor

For the corn example, the Total SS is:

Equation 3



Sum of Squares - Residual SS

The residual or error SS, Resid SS, is the difference between the Total SS and the Treat SS:

The residual sum of squares represents the distribution of the observations around each treatment mean. This

represents the “background” differences between experimental units.

Equation 4



Study Question 1

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed F Required F

(5%)

Treatment 2 25.537      

Error 6 3.989      

Total 8 29.526      

Which sum of squares is larger, treatment or error?

Error

Treatment

 Check



One-Way ANOVA (1)

The analysis of variance is a method of separating the variability in an experiment into useful and more

manageable parts. This separation helps to assess the signi�cance of what is being tested. Let's play with

some numbers and see how they respond pictorially in addition to the numerical response.

The applet on the following screen contains three data sets from a single factor ANOVA. The individual

samples are marked on the vertical bar. The sample mean for each factor is marked with a plus sign. By clicking

on the bar on speci�c mark, you can move individual points. Clicking in a blank spot will add a point. Dragging a

point outside its chart area will delete it. The treatment mean mark shifts accordingly.

As points are added or changed, the summary statistics (bottom left), the ANOVA table (bottom right), and the

pie chart of sums of squares (top right) change accordingly. You may change the data set at the top and clear

the data.

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/one-way-anova-2
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/one-way-anova-2


One-Way ANOVA (2)



Discussion: One-Way ANOVA

How does the change in mean between treatments affect the signi�cance of their differences?

How much does the variability within treatments affect the signi�cance of their differences?

How much effect do individual samples have in the �nal analysis?

What is the effect of adding additional samples to the analysis?

To answer the �rst question, try dragging points for group 1 and for group 3, so that their means are close to

that of group 2 and their within SS (error SS contribution) is similar to the start values of 5.0 for each. Notice

that the probability (p-value) in the ANOVA table goes from very small 0.00 to values above 0.05 and closer to 1.

We would fail to reject the null hypothesis when p > 0.05.

Also, notice how dragging individual values to increase variation within groups, with means about the same as

originally set, raises p-value so that the mean differences are no longer signi�cant.

You can also add values to the starting ones, choose different sample sets, or clear all and add any values you

wish to get an ideas on how individual values affect the F- and p-values.



Mean Squares

Mean squares are the variance estimates in the ANOVA table.

The mean square associated with the source of variation is calculated by dividing the sum of squares (the

numerator in the variance formula) by the degrees of freedom (the denominator in the variance formula). This

gives us the following values for our table:

Obviously, the greater the number of treatment levels and the larger number of experimental units involved in an

experiment, the more variation is introduced. An experiment with 50 experimental units will generally have a

larger total variability than one with 10 units. The variation has to be partitioned or divided among the treatment

and error sources of variation. This number is then called the treatment mean square (TMS) and residual or

error mean square (RMS). These, respectively, are estimates of variance among treatments (TMS) and within

treatments, or residual variance (RMS, also called s2).

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205  

Error 6 3.989 0.665    

Total 8 29.526      



Observed F-Ratio

The F-ratio tests whether treatments are different.

The last step in computing the analysis of variance is to compare the difference in variation between our

treatment means and the error by dividing the mean square associated with treatments (TMS) by the mean

square associated with the residual (RMS). This mean square, or variance, ratio gives us an observed F-value:

The F-ratio now explains how much of the variability can be attributed to the designed part of the experiment

(treatments) as opposed to the error or residual. The larger the F-ratio is, the less likely that the treatments are

the same. If treatments are the same, we expect the observed F-ratio to be about 1. It will be compared with a

table F-value for determining signi�cance (next section).

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205  

Error 6 3.989 0.665    

Total 8 29.526      



Study Question 2

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205  

Error 6 3.989 0.665    

Total 8 29.526      

Do you think the yields for the different plant populations are signi�cantly different?

No

Yes

Don't know

 Check



Testing Hypotheses

Testing Hypotheses - Purpose

The hypothesis we test is whether the true treatment means are the same.

The process of performing an ANOVA is to separate the designed and explainable variation from the random

and unexplainable variation. Once this has been done, some test is necessary to assess what has occurred. A

hypothesis test can be set up similar to what is done with t-tests. When using the t-test we were comparing two

means.

The null hypothesis we are testing in the analysis of variance is that all treatment means are equal. In the case

of our corn experiment the null hypothesis is: H0: µ1 = µ2 = µ3. This null hypothesis states that average corn

yields are the same for any of the three plant populations. To test this hypothesis we determine the probability

that our calculated value might have occurred by chance. A common approach to this is to look up a critical

F-value in a table for the alpha level we are willing to accept and compare it to the calculated F-value.



Comparing Values - The Critical F-value

Returning to the example, our F-value can be compared with these, in a manner similar to that used with the

t-test. Unlike the t-test, however, the F-test considers the degrees of freedom associated with both the

numerator and the denominator to calculate the F-ratio. In this case, these are the degrees of freedom

associated with the treatment and error, respectively.

Critical F-values are listed here. Note that for each combination of numerator and denominator degrees of

freedom, the tables list four values. These values re�ect the minimum F-value associated with the 5% (0.05),

2.5% (0.025), 1% (0.01), and 0.1% (0.001) probabilities of occurrence. The degrees of freedom for the

numerator are listed across the top of the table. The degrees of freedom associated with the denominator are

listed in the left column of the table. The table is duplicated (Table 8), but for the sake of clarity, only the values

associated with P=0.05 are shown.

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/critical-f-values
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/critical-f-values
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/critical-f-values
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/critical-f-values


Study Question 3

Source of

Variation

Degrees of

Freedom

Sum of

Squares

Mean

Square

Observed

F

Required F

(5%)

Treatment 2 25.537 12.769 19.205 5.14

Error 6 3.989 0.665    

Total 8 29.526      

What would be your decision in this experimental result?

Accept Ha: One or more treatments have statistically different means

Reject H0: All Treatment means are equal

No conclusion can be drawn from the results.

Accept H0: All treatment means are equal

 Check



Explanation

Many statistical packages including R will calculate the actual probability of getting the observed F-value by

chance, given that the null hypothesis is true. This is listed as Prob > F. If this P-value is below 0.05, we know

our calculated F-value would have exceeded the Table F-value and we reject the null hypothesis.

The reason we reject the null hypothesis when the P-value is small is because this is the probability, assuming

the null is true, of �nding such a result by random chance. When the p-value is small, it is unlikely that the null is

actually true. Therefore, we reject it.



Ex. 1: One-Factor ANOVA of a CRD

R Code Functions

• getwd()

• rm(list=())

• str()

• setwd()

• hist()

• as.factor()

• read.csv()

• attach()

• aov()

• rm()

• boxplot()

• summary()

Activity Objectives

• Students will conduct exploratory data analyses (EDA) on data from a simple Completely Randomized

Design (CRD).

• Assess whether students know how to interpret results from EDA.

• Students will conduct an Analysis of Variance (ANOVA) on data from a simple CRD.

Source data

The data can be downloaded here.

https://pbea.agron.iastate.edu/files/crd1datacsv
https://pbea.agron.iastate.edu/files/crd1datacsv


Ex. 1: Read the Data Set into R

Before you can conduct any analysis on data from a text �le or spreadsheet, you must �rst enter, or read, the

data �le into the R data frame. For this activity, our data is in the form of an excel comma separated values (or

CSV) �le; a commonly used �le type for inputting and exporting data from R.

Make sure that the data �le for this exercise is in the working directory folder on your desktop.

Note: We previously discussed how to set the working directory to a folder named on your desktop. For this

activity, we will repeat the steps of setting the working directory to reinforce the concept.

In the Console window, enter getwd(). R will return the current working directory below the command you

entered:

getwd()

[1] "C:/Users/[Name]/Documents"

Set the working directory to the folder on your desktop by entering. For a folder named ‘wd’ on our desktop, we

enter:

setwd("C:/Users/[Name]/Desktop/wd")

Now, we want to read the CSV �le from our working directory into RStudio. At this point, we learn an important

operator: <-. This operator is used to name data that is being read into the R data frame. The name you give to

the �le goes on the left side of this operator, while the command read.csv goes to its right. The name of the CSV

�le from your working directory, in this case CRD.1.data.csv, is entered in the parenthesis and within quotations

after the read.csv command. The command header = T is used in the function to tell R that the �rst row of the

data �le contains column names, and not data.

Read the �le into R by entering into the Console:

data <- read.csv("CRD.1.data.csv", header=T)

Tip: If you are working out of the Console and received an error message because you typed something

incorrectly, just press the ↑ key to bring up the line which you previously entered. You can then make corrections

on the line of code without having to retype the entire line in the console window again. This can be an

extremely useful and time saving tool when learning to use a new function. Try it out.

If the data was successfully read into R, you will see the name that you assigned the data in the

Workspace/History window (top-right).



Ex. 1: Exploratory Data Analysis

Let’s do some preliminary exploring of the data.

Read the data set into the R data frame.

data <- read.csv("CRD.1.data.csv", header=T)

First, let’s look at a histogram of the yield data to see if they follow a normal distribution. We can accomplish

this using the hist command.

Enter into the console:

hist(data$Yield, col="blue", main="Histogram of Yield of 3 Synthetic Maize Populations", xlab="Yield (t/ha)",

vlab="Frequency")

R returns the histogram in the Files/Plots/Packages/Help window (bottom-right).

Fig. 2



Ex. 1: Create a Boxplot

Let’s go through the command we just entered: data$Yield speci�es that we want to plot the values from the

column Yield in the data, col="blue" indicates which color the histogram should be, the entry in quotations after

main= indicates the title that you’d like to give the histogram, the entries after xlab= and ylab= indicate how the

x and y axes of the histogram should be labeled. The histogram appears in the bottom-right window in RStudio.

The histogram can be saved to your current working directory by clicking ‘export’ on the toolbar at the top of the

lower-right window, then clicking “save plot as PNG” or “save plot as a PDF”. You may then select the size

dimensions you would like applied to the saved histogram.

Let’s now look at some boxplots of yield by population for this data. First, enter into the Console window

attach(data). The attach command speci�es to R which data set we want to work with, and simpli�es some of

the coding by allowing us just to use the names of columns in the data, i.e. Yield vs. data$Yield. After we enter

the attach command, we’ll enter the boxplot command.

attach(data)

boxplot(Yield~Pop, col="red", main="Yield by Population", xlab="Synthetic Population", ylab="Yield"

R returns the boxplot in the bottom-right window.

Let’s go through the boxplot command: Yield~Pop indicates that we want boxplots of the yield data for each of

the 3 populations in our data, col= indicates the color that we want our boxplots to be, main= indicates the title

we want to give the boxplots, and xlab= and ylab= indicate what we want the x and y axes labeled as.

Note: Yield is capitalized in our data �le, thus it MUST also be capitalized in the boxplot command.

Fig. 3



Ex. 1: Calculate Coefficient of Variance

The coe�cient of variance can be calculated for each population in the data set. Looking at the data, we can

see that lines 1 to 3 pertain to population 7.5. We know that the coe�cient of variation for a sample is the mean

of the sample divided by the standard deviation of the sample. By using the command mean(), we can calculate

the mean for a sample. Remember that to specify a column from a data frame, we use the $ operator. If we

want to calculate the mean of population 7.5 from the data (rows 1 to 3 in the data), we can enter

mean(data$Yield[1:3])

To calculate the standard deviation of the yield for population 7.5, enter

sd(data$Yield[1:3])

The coe�cient of variance is therefore calculated by entering

mean(data$Yield[1:3])/sd(data$Yield[1:3])



Ex. 1: Carry Out ANOVA

Now that we’ve gained some intuition about how the data behave, let’s carry out an ANOVA with one factor

(Pop) on the data. We �rst need to specify to R that we want Population to be a factor. Enter into the Console

Pop<-as.factor(Pop)

Let’s go through the command above: as.factor(data$Pop) speci�es that we want the Pop column in dataset

data to be a factor, which we’ve called Pop.

Now that we have population as a factor, we’re ready to conduct the ANOVA. The model that we are using for

this one-factor ANOVA is Yield=Population. In the Console, enter

out <- summary(aov(Yield ~ Pop))

Let’s look at the ANOVA table. Enter out in the Console window.

out

             Df Sum Sq Mean Sq F value  Pr(>F)

Pop           2 25.537  12.769    19.2 0.00247 **

Residuals     6  3.989   0.665

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Ex. 1: Interpreting the Results

In this ANOVA table, the error row is labeled Residuals. In the second and subsequent columns you see the

degrees of freedom for Pop and Residuals (2 and 6), the treatment and error sums of squares (25.537 and

3.989), the treatment mean square of 12.769, the error variance = 0.665, the F ratio and the P value (19.2 and

0.0025). The double asterisks (**) next to the P value indicate that the difference between the yield means of

the three populations is signi�cant at 0.1% (i.e. we reject the null hypothesis that the yield means of each

population are statistically equivalent). Notice that R does not print the bottom row of the ANOVA table showing

the total sum of squares and total degrees of freedom.



Ex. 2: Wheat Yield Example

R Code Functions

• getwd()

• hist()

• as.factor()

• setwd()

• attach()

• aov()

• read.csv()

• boxplot()

• summary()

• head()

• str()

The Scenario

You are a data analyst for the respected seed company “Vavilov’s Varieties”. In an effort to �nd a source of

genetic resistance to a strain (UG99) of rust that is plaguing the company’s current wheat lines, the company

has acquired 300 genetically diverse wheat landraces from central Asia. A test for resistance to the rust strain

was done on each of the landraces, and 100 out of the 300 landraces were found to be completely resistant.

The company’s plan is to introgress via backcrossing the resistance gene/genes from a single rust-resistant

landrace into an elite, high yielding cultivar already being sold by the company. A preliminary yield test with

each of the 100 resistant landraces planted in 2 reps at a single location was conducted. Your supervisor wants

to know if there is a statistically signi�cant difference among the yield results of the landraces, and if it is

therefore possible to minimize yield drag by selecting the highest yielding resistant landrace for use in

converting the elite germplasm for resistance to the rust. There are no funds in your budget to acquire

commercial statistical software, and in addition your supervisor tells you that he needs to make a decision as

soon as possible (precluding you from doing the analysis by hand).

Source Data

You can download the data �le here.

https://pbea.agron.iastate.edu/files/crd2datacsv
https://pbea.agron.iastate.edu/files/crd2datacsv


Ex. 2: Enter the Data into R

Do some exploratory analysis on the data (i.e. create a histogram of yield, boxplots for the yield of each

landrace, calculate the mean, standard deviation, and coe�cient of variation of yield for all of the landraces).

Then, carry out an ANOVA with one factor (LR) on the yield data. Finally, explain the results of your analysis in

the context of the problem (i.e. does the ANOVA lead you to accept or reject the null hypothesis that the yields

of all of the landraces are statistically equivalent). Finally, make a decision as to which landrace should be

entered into your company’s wheat breeding program. The R code for this example is almost the same as the

Corn Population Example in Activity 8.2. The response variable is still ‘Yield’ and the factor variable is ‘LR’

(landrace).

The following code will assist you in carrying out these analyses.

If you are working in the Script window of R studio, you can enter comments/descriptions on lines of code by

�rst entering the # symbol, then entering your comment after. R will recognize this line as a comment, and not

try to execute the line as command when you enter the code from the Script window into the Console using

CTRL+ENTER. This can be very useful when working in a team setting where you may have to share code with

other team members who might not be familiar with some types analyses or commands R.

Read the CSV data �le into R.

data<-read.csv("CRD.2.data.csv", header=T)

Look at the �rst few lines of the dataset.

head(data)

  LR Rep Yield

1  1   1 1.854

2  1   2 1.895

3  2   1 2.157

4  2   2 2.250

5  3   1 1.595

6  3   2 1.777

Create a histogram of the yield data from the dataset.

hist(data$Yield, col="green", main="Histogram of yield of wheat landraces", xla b="Yield

(t/ha)",ylab="Frequency")

Create a boxplot of the yield for each landrace.



boxplot(data$Yield~data$LR, col="yellow", main="Yield by Population", xlab="Landrace", ylab="Yield (t/ha)")

Display the structure of the data frame 'data'.

str(data)

'data.frame':  200 obs. of 3 variables:

 $ LR   : int  1 1 2 2 3 3 4 4 5 5 ...

 $ Rep  : int  1 2 1 2 1 2 1 2 1 2 ...

 $ Yield: num  1.85 1.9 2.16 2.25 1.59 ...

Make Landrace (LR) a factor by which to separate the yield data

LR <- as.factor(data$LR)

Perform a one-factor ANOVA

out <- summary(aov(Yield ~ LR))

out

                       Df Sum Sq Mean Sq F value   Pr(>F)

LR                     99 9.721  0.09819   2.997 4.71e-08 ***

Residuals             100 3.276  0.03276

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Ex. 2: Interpret the ANOVA

Now, let’s interpret the results of the ANOVA.

The P value is given in the ANOVA table as 4.65e-08, or 0.0000000465. Looking at the signi�cance codes at the

bottom of the ANOVA table output in R, we can see that this p-value is signi�cant at even the most stringent of

signi�cance level (0.001). This leads us to reject the null hypothesis that the yields of the different landraces

are statistically the same. What does this mean for us as plant breeders? If the yields of the different landraces

are not all statistically equivalent, then there must be some landraces that have higher mean yields than others.

We can therefore select the top performing landrace for yield to minimize the effect of yield drag when

introgressing the gene/s that confer resistance to rust strain UG99 into an elite background.



The Linear Additive Model

Purpose

A way to conceptualize how treatments, such as plant density or fertilizer, affect crop yields is to write the yield

(Y) as composed of an overall mean, a treatment effect, and error. The common way to express this is in the

form of a linear model equation.

Later we will use this linear model equation method for understanding more complex situations and

experiments. It is important to realize that every designed experiment can be described by a linear additive

model and that this model determines the manner in which we apply the ANOVA to the experiment. The linear

additive model lists all the sources of variation that are accounted for in the experiment relative to the overall

mean. For the one-way analysis of variance, the ANOVA table contains two sources: treatments and error. In

experiments containing additional treatments as factors, there will be more sources in the model and these will

correspond to additional rows in the ANOVA table.



The Linear Model Equation

As discussed in the previous sections, the ANOVA decomposes the variability for each part of the experiment.

Each effect can be considered as a part of the variability seen in each experimental unit. Since these effects are

additive, we can view the result from each unit as a combination of each effect. Symbolically, the linear additive

model for ANOVA is:

where:

Yij = response observed for he ijth experimental unit

 = overall population mean

Ti = effect of the ith treatment

 = effect associated with the ijth experimental unit, commonly referred to as error or residual

About these subscripts: “i” refers to the treatment, and “j” refers to the replication of that treatment. So an

experiment will have “i*j” experimental units; each unit will be identi�ed by a unique “ij” combination. For

example, the response of experimental unit with the 4th replication of the 3rd treatment will be notated as Y34.

This is the same as the linear model for the t-test, expanded to more than just two treatments or populations.

Equation 5



Application

For the corn population experiment we can rewrite the model to indicate the true sources of variation as:

where:

Yieldij = corn yield for the ijth plot

 = average corn yield for the experiment

POPi = effect of the ith planting population

PLOT(i)j = effect associated wioth the ijth plot (residual)

You can think of a linear model as a ledger. The dependent variable (Yij) is analogous to the current balance and

the mean can be thought of as the initial balance. Each of the other terms (independent variables) are either a

credit or a debit. So in the model above, corn yield in a given plot is simply the value that remains after the

average yield has been adjusted for the effects of population and error.

Equation 6

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/analysis-variance-anova/detail-visual-guide
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Visual Guide



Summary

ANOVA

• Tests hypothesis that treatment means are same.

• Compares variance from treatment mean differences with that from error.

• Separates the variances in a table, with sources being Treatment, Error, and Total.

• Has degrees of freedom (df) for each source of variation.

• Has sum of squares (SS) for each source.

• Computes variance estimates as mean squares, ms = ss/df.

F-test

• The null hypothesis (no difference in treatment means) is tested with the F-ratio,F = Treatment MS/Error

MS.

• For each alpha level, the table F - value depends on numerator and denominator df.

Linear Additive Model

• Expresses the partition of Y into overall mean, treatment, and error.

• These components are added to get Y.

• Provides basis for more complex linear models in later units.
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Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?



For Your Information

Critical F-values

This table gives critical values of F at the p=0.05 level of signi�cance.

  Degrees of Freedom

F 1 2 3 4 5 6 7 8 9 10

1 161.45 199.5 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88

2 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.39 19.4

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.1 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.97 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.2 3.1 3.01 2.95 2.9 2.85

12 4.75 3.89 3.49 3.26 3.11 3 2.91 2.85 2.8 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.6 3.74 3.34 3.11 2.96 2.85 2.76 2.7 2.65 2.6

15 4.54 3.68 3.29 3.06 2.9 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.2 2.97 2.81 2.7 2.61 2.55 2.49 2.45

18 4.41 3.56 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.9 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39 2.35

21 4.33 3.47 3.07 2.84 2.69 2.57 2.49 2.42 2.37 2.32

22 4.3 3.44 3.05 2.82 2.66 2.55 2.46 2.4 2.34 2.3

23 4.28 3.42 3.03 2.8 2.64 2.53 2.44 2.38 2.32 2.28

24 4.26 3.4 3.01 2.78 2.62 2.51 2.42 2.36 2.3 2.26

25 4.24 3.39 2.99 2.76 2.6 2.49 2.41 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.2

28 4.2 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.7 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.17

31 4.16 3.31 2.91 2.68 2.52 2.41 2.32 2.26 2.2 2.15

32 4.15 3.3 2.9 2.67 2.51 2.4 2.31 2.24 2.19 2.14

33 4.14 3.29 2.89 2.66 2.5 2.39 2.3 2.24 2.18 2.13

34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12

35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11

36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15 2.11

37 4.11 3.25 2.86 2.63 2.47 2.36 2.27 2.2 2.15 2.1

38 4.1 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09

39 4.09 3.24 2.85 2.61 2.46 2.34 2.26 2.19 2.13 2.08



  Degrees of Freedom

F 1 2 3 4 5 6 7 8 9 10

40 4.09 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

41 4.08 3.23 2.83 2.6 2.44 2.33 2.24 2.17 2.12 2.07

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.07

43 4.07 3.21 2.82 2.59 2.43 2.32 2.23 2.16 2.11 2.06

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.1 2.05

45 4.06 3.2 2.81 2.58 2.42 2.31 2.22 2.15 2.1 2.05

46 4.05 3.2 2.81 2.57 2.42 2.3 2.22 2.15 2.09 2.04

47 4.05 3.2 2.8 2.57 2.41 2.3 2.21 2.14 2.09 2.04

48 4.04 3.19 2.8 2.57 2.41 2.3 2.21 2.14 2.08 2.04

49 4.04 3.19 2.79 2.56 2.4 2.29 2.2 2.13 2.08 2.03

50 4.03 3.18 2.79 2.56 2.4 2.29 2.2 2.13 2.07 2.03

51 4.03 3.18 2.79 2.55 2.4 2.28 2.2 2.13 2.07 2.02

52 4.03 3.18 2.78 2.55 2.39 2.28 2.19 2.12 2.07 2.02

53 4.02 3.17 2.78 2.55 2.39 2.28 2.19 2.12 2.06 2.02

54 4.02 3.17 2.78 2.54 2.39 2.27 2.19 2.12 2.06 2.01

55 4.02 3.17 2.77 2.54 2.38 2.27 2.18 2.11 2.06 2.01

56 4.01 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.05 2.01

57 4.01 3.16 2.77 2.53 2.38 2.26 2.18 2.11 2.05 2

58 4.01 3.16 2.76 2.53 2.37 2.26 2.17 2.1 2.05 2

59 4 3.15 2.76 2.53 2.37 2.26 2.17 2.1 2.04 2

60 4 3.15 2.76 2.53 2.37 2.25 2.17 2.1 2.04 1.99

61 4 3.15 2.76 2.52 2.37 2.25 2.16 2.09 2.04 1.99

62 4 3.15 2.75 2.52 2.36 2.25 2.16 2.09 2.04 1.99

63 3.99 3.14 2.75 2.52 2.36 2.25 2.16 2.09 2.03 1.99

64 3.99 3.14 2.75 2.52 2.36 2.24 2.16 2.09 2.03 1.98

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.03 1.98

66 3.99 3.14 2.74 2.51 2.35 2.24 2.15 2.08 2.03 1.98

67 3.98 3.13 2.74 2.51 2.35 2.24 2.15 2.08 2.02 1.98

68 3.98 3.13 2.74 2.51 2.35 2.24 2.15 2.08 2.02 1.97

69 3.98 3.13 2.74 2.51 2.35 2.23 2.15 2.08 2.02 1.97

70 3.98 3.13 2.74 2.5 2.35 2.23 2.14 2.07 2.02 1.97

71 3.98 3.13 2.73 2.5 2.34 2.23 2.14 2.07 2.02 1.97

72 3.97 3.12 2.73 2.5 2.34 2.23 2.14 2.07 2.01 1.97

73 3.97 3.12 2.73 2.5 2.34 2.23 2.14 2.07 2.01 1.96

74 3.97 3.12 2.73 2.5 2.34 2.22 2.14 2.07 2.01 1.96

75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96

76 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96

77 3.97 3.12 2.72 2.49 2.33 2.22 2.13 2.06 2 1.96

78 3.96 3.11 2.72 2.49 2.33 2.22 2.13 2.06 2 1.95

79 3.96 3.11 2.72 2.49 2.33 2.22 2.13 2.06 2 1.95

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2 1.95

81 3.96 3.11 2.72 2.48 2.33 2.21 2.13 2.06 2 1.95

82 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 2 1.95

83 3.96 3.11 2.72 2.48 2.32 2.21 2.12 2.05 2 1.95

84 3.96 3.11 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.95

85 3.95 3.1 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94



  Degrees of Freedom

F 1 2 3 4 5 6 7 8 9 10

86 3.95 3.1 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94

87 3.95 3.1 2.71 2.48 2.32 2.21 2.12 2.05 1.99 1.94

88 3.95 3.1 2.71 2.48 2.32 2.2 2.12 2.05 1.99 1.94

89 3.95 3.1 2.71 2.47 2.32 2.2 2.11 2.04 1.99 1.94

90 3.95 3.1 2.71 2.47 2.32 2.2 2.11 2.04 1.99 1.94

91 3.95 3.1 2.71 2.47 2.32 2.2 2.11 2.04 1.98 1.94

92 3.95 3.1 2.7 2.47 2.31 2.2 2.11 2.04 1.98 1.94

93 3.94 3.09 2.7 2.47 2.31 2.2 2.11 2.04 1.98 1.93

94 3.94 3.09 2.7 2.47 2.31 2.2 2.11 2.04 1.98 1.93

95 3.94 3.09 2.7 2.47 2.31 2.2 2.11 2.04 1.98 1.93

96 3.94 3.09 2.7 2.47 2.31 2.2 2.11 2.04 1.98 1.93

97 3.94 3.09 2.7 2.47 2.31 2.19 2.11 2.04 1.98 1.93

98 3.94 3.09 2.7 2.47 2.31 2.19 2.1 2.03 1.98 1.93

99 3.94 3.09 2.7 2.46 2.31 2.19 2.1 2.03 1.98 1.93

100 3.94 3.09 2.7 2.46 2.31 2.19 2.1 2.03 1.98 1.93
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