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Introduction

In the previous module we discussed how one could analyze for differences in treatments, each replicated on

several plots, using an analysis of variance. Often there is more than one type of treatment we wish to use in an

experiment. For example, we may want to know the effect of different plant populations on yield, but also how

different levels of nitrogen application affect the yield. This module will build on the principle you learned in the

last unit and add another factor to have two factors in the ANOVA.

Objectives

• How to analyze a second factor in an ANOVA

• The linear additive model for a two-factor ANOVA

• The advantages of factorial experiments

• How to completely randomize an experiment



Factorial Experiments

Multiple Treatment Factors

Factorial Experiments Involve More Than One Treatment Factor

In the corn population experiment analyzed in the module on The Analysis of Variance (ANOVA), we were

interested only in the response of one hybrid. However, corn hybrids respond differently to changes in plant

population. What if we wanted to compare the response of three different hybrids to population changes? What

are our options in designing this experiment?

Option 1 

We could consider each hybrid in a separate experiment. For each hybrid, then, we would plant our plots using

each of the three populations. We would need the following experimental units:

• hybrid A x 3 populations x 3 replications = 9 plots

• hybrid B x 3 populations x 3 replications = 9 plots

• hybrid C x 3 populations x 3 replications = 9 plots

The three experiments would require 27 (9+9+9) total experimental units, in this case plots. The results from

this experiment would tell us the response of each hybrid to population changes. Each experiment would have

an ANOVA table (Table 0) similar to that used previously.

Table 0 ANOVA table for corn planted at three populations in northwest Iowa. 

Source of Variation Degrees of Freedom

Population 2

Error 6

Total 8



Combining Factors

Yet, since each hybrid test is conducted as a separate experiment, we could not compare the yields of each

hybrid. In other words, we would know which population is most appropriate for each hybrid. But, we could not

predict which hybrid would produce the greatest yield with any con�dence. The experiments were simply not

designed in a manner to allow this.

Option 2

We could develop an experimental arrangement where these two factors are combined into a factorial

experiment. In this case, all combinations of population and hybrid would occur within the same experiment.

The total number of treatments would be 9 (3 hybrids x 3 populations). In this case, with three replications, we

would have: 3 hybrids x 3 populations x 3 replications = 27 plots.

However, this factorial experiment will produce more useful information than the �rst design. Speci�cally, this

experiment will tell us whether the effect produced by changing plant population is the same regardless of

hybrid, or if each hybrid reacts differently to population. If each hybrid reacts differently to population, we will

say that there is an interaction between the hybrids and plant populations. To analyze the results from this

experiment, the ANOVA must be expanded to include the additional effects: another main factor and its

interaction with the original main factor (Table 0).

Table 0 ANOVA table for three corn varieties planted at three populations in Northwest Iowa. 

Source of Variation Degrees of Freedom

Population 2

Hybrid 2

Interaction 4

Error 18

Total 26



Degrees of Freedom

The table is similar to the one used before, with the exception of these two new sources of variation. The

degrees of freedom are calculated using the formulae in Table 0. Note that even though we have the same

number of experimental units whether we evaluate the three hybrids separately (Table 0) or together (Table 0),

our residual degrees of freedom and the sensitivity of our F-test increase dramatically with factorial design.

The ANOVA for factorial experiments can be completed using a "cookbook" method similar to that described in

the previous module. However, since most experiments of this type are analyzed using computer software, we

will not continue the example here. Rather, we will use the computer to analyze a similar experiment using R to

calculate the statistics we need.

Table 0 Degrees of freedom factorial experiment 

Source of Variation Degrees of Freedom

Treatment A # of levels of treatment A-1

Treatment B # of levels of treatment B-1

Interaction (df for Trt A) x (df for Trt B)

Error (# of levels of Trt A) x (# of levels of Trt B) x (# of replications - 1)

Total (# of levels of Trt A) x (# of levels of Trt B) x (# of replications) - 1



Interaction

No Interaction

Interaction Is Differential Response Of One Factor At Different
Levels Of Another

In addition to maximizing the e�ciency of an experiment by combining the treatments into one set of plots, a

two-factor ANOVA introduces another effect; the interaction between the treatments. As introduced in the

ANOVA Table 0, there is an additional source of variation in the analysis: the interaction between our two main

treatment factors.

As is often realized, additional effects occur because of interaction between two treatments. Two factors can

not interact at all, interact positively, or interact negatively. These can be depicted well by graphs. Let's consider

two different varieties at three different levels of N.

Example 1: No Interaction

Here yield of the two varieties reacts similarly to

N-rate. Thus, there is no interaction between N and

variety. Notice that the lines are parallel so the

effect of the variety is constant as N rate increases.

Variety 1 is uniformly superior at each N level and

higher levels of N result in improved yield of each

variety.

Fig. 0



Positive Interaction

Example 2: Positive Interaction

Yield of the two varieties differs based on level of N

applied, but the variety 1 always yields better than

variety 2. The response of each variety depends on

the level of N applied. It is no longer constant as in

the previous example. The type of interaction is

sometimes referred to as a change in the

magnitude of the response interaction. Variety 1 is

still the highest yielding variety, but the magnitude

of its response to N depends on the amount of N

applied. With this type of interaction, you can't

evaluate the effect of N independent of variety

because the response is different depending on

which variety you are talking about. Whenever an

interaction tests as signi�cant in the ANOVA, it is

important to ignore the main factor means and focus on the interaction means.

Fig. 0



Negative Interaction

Example 3: Negative Interaction

The last type of interaction occurs when the yield

response is completely opposite based on the level

of N. Note that the lines in the �gure now cross

each other. This changes the interpretation

drastically because the best variety to grow now

depends on the level of N that is applied. You would

need to fertilize each variety differently based on

the response. This is often called a crossover

interaction and it is very important to pay attention

when they occur because your recommendation

about one factor depends heavily on the level of the

other. Often when a crossover interaction occurs

one or both main factors involved in the interaction

tests as nonsigni�cant in the ANOVA. When this

occurs, you should look at the results very carefully because failure to assess the interaction carefully can

result in poor recommendations.

Fig. 0



Linear Additive Model for Two-Factor ANOVA

The Linear Model

The Linear Model For A Factorial Is A Simple Extension Of The
Linear Model

The addition of factors and their possible interaction produce further complexity in the ANOVA. But the effects

can be added just as the previous effects were to the linear model.

The linear model for a two-factor ANOVA is:

where:

Yijk = response observed for the ijth experimental unit

 = overall mean

Ai = effect of the ith level of factor A

Bi = effect of the jth level of factor B

ABij = effect of the interaction between the ith level of factor A and the jth level of factor B

 = effect associated with the ijkth experimental unit; commonly referred to as error

Equation 0



True Sources of Variation

True Sources of Variation

Notice that the only change in the linear model from equation 8 is that the treatment structure is modi�ed. We

now have sources for factor A, factor B and their interaction. The error structure is not changed; we still have

only a single random error for the experiment. Factorial refers to the treatment structure, not the assignment of

treatments to experimental units.

For the corn population x hybrid experiment we can rewrite the model to indicate the true sources of variation

as:

where:

Yieldijk = corn yield observed for the ijkth plot

 = average yield for the experiment

POPi = effect of the ith plant production

HYBRIDj = effect of the jth hybrid

PHij = interaction effect between the ith population and the jth hybrid

PLOT(ij)k  = random error effect of the ijkth plot

Try: Running an ANOVA for a Two-factor CRD in the next screens

Equation 0



Ex. 1: Running an ANOVA for a Two-Factor CRD

R Code Functions

• setwd()

• aov()

• summary()

• <-

• attach()

• subset()

• read.csv()

• detach()

• pf()

• head()

• as.factor()

• interaction.plot()

• as.data.frame()

• aov()

The Scenario

You are an employee for a maize development company in charge of developing new high-yielding maize

hybrids for use in central Iowa. For the past 2 years you have been developing A-lines and now you want to test

their general combining ability with the company’s elite R-line. Unfortunately, (because it’s Iowa), your plots are

savaged by a tornado and bowling ball-sized hail and only 2 of your candidate inbreds remain. You cross these

ridiculously fortunate inbreds to the R-line to produce seed for 2 hybrids which are planted the following spring

in 3 locations across central Iowa utilizing a randomized complete design with 3 reps at each location. You also

plant a standard maize hybrid along with the two you developed to serve as a check within your �eld (the check

is Hybrid C). With the help of your intern, you harvest each plot and calculate the projected bushels/acre.

Source data

The yield data from the hybrids can be found in the �le: “ANOVA 2factorCRD.csv”

https://pbea.agron.iastate.edu/files/anova-2factorcrdcsv
https://pbea.agron.iastate.edu/files/anova-2factorcrdcsv


Ex. 1: Data Set

In this data set, you can see that we have columns for treatment, location, hybrid, replication, and the yield in

t/ha. It’s good to remember that while you have 3 hybrids and 3 locations, your total number of treatments is 9,

not just the 3 hybrids or the 3 locations. In this activity you will learn how to run a 2-factor ANOVA that will help

you choose which of the 3 hybrids you will select and move on to the next stage of testing in your program.

Activity Objectives

• Build and run an ANOVA for a 2 factor model that accounts for

population, hybrid, and the interaction between population and

hybrid

• Assess whether each individual hybrid is signi�cantly affected

by location

Fig. 0



Ex. 1: Run the ANOVA

First you need to read in the data set.

Ex9.1<-read.csv("ANOVA 2factorCRD.csv", header=T)

head(Ex9.1)

  Treatment Location Hybrid Rep  Yield

1         1        1      A   1  7.446

2         1        1      A   2  9.844

3         1        1      A   3 11.178

4         2        1      B   1  9.130

5         2        1      B   2  9.269

6         2        1      B   3  9.864

This may not be necessary, but you can use this line of code to make sure that your data is read as a data

frame.

Ex9.1<-as.data.frame(Ex9.1)



Ex. 1: Make Adjustments

Check the structure of the data frame; notice that ‘Location’ is considered to be an integer because it’s listed as

numbers in the .csv �le.

str(Ex9.1)

'data.frame:27 obs. of 5 variables:

 $ Treatment: int  1 1 1 2 2 2 3 3 3 4 ...

 $ Location  : int  1 1 1 1 1 1 1 1 1 2 ...

 $ Hybrid   : Factor w/ 3 levels "A","B","C": 1 1 1 2 2 2 3 3 3 1 ...

 $ Rep      : int  1 2 3 1 2 3 1 2 3 1 ...

 $ Yield    : num  7.45 9.84 11.18 9.13 9.27...

You will need to change the ‘Location’ to a factor in order for the analysis to work.

Ex9.1$Location<-as.factor(Ex9.1$Location)

Location<-as.factor(Ex9.1$Location)

Check the structure again and observe that ‘Location’ is now considered to be a factor.

attach(Ex9.1)



Ex. 1: Two-Way ANOVA

Run the ANOVA using the aov() function, just like with one-way designs. The only difference is that now we want

to include both factors and their interaction in our model. There are two equivalent ways to do this. The �rst

way explicitly speci�es each term; the second way is a shortcut.

str(Ex9.1)

‘data.frame’: 27 obs. of  5 variables:

 $ Treatment: int  1 1 1 2 2 2 3 3 3 4 ...

 $ Location : int  1 1 1 1 1 1 1 1 1 2 ...

 $ Hybrid   : Factor w/ 3 levels “A”,”B”,”C”: 1 1 1 2 2 2 3 3 3 1 ...

 $ Rep      : int  1 2 3 1 2 3 1 2 3 1 ...

 $ Yield    : num  7.45 9.84 11.18 9.13 9.27 ...

Or:

Ex9.1.outB = aov(Yield ~ Location*Hybrid, data = Ex9.1)

summary(Ex9.1.outB)

                Df Sum Sq Mean Sq F value Pr(>F)

Location         2   9.45   4.726   2.109 0.1504

Hybrid           2  13.09   6.544   2.920 0.0797 .

Location:Hybrid  4  30.25   7.562   3.374 0.0316 *

Residuals       18  40.34   2.241

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Ex. 1: Run Individual ANOVAs

The signi�cant interaction between Population and Hybrid type indicates the simple effects of one factor differ

among levels of another factor. One research questions for this example might ask if the yields of each Hybrid

type are the same across three Locations. To test the simple main effect of each Hybrid, across three levels of

Location, we can perform the analysis as follows:

1. Separate the data into subsets, based on Hybrid type

2. Run an ANOVA testing the effect of Location in each subset

A = subset(Ex9.1, Hybrid == “A”)

B = subset(Ex9.1, Hybrid == “B”)

C = subset(Ex9.1, Hybrid == “C”)

A.out = summary(aov(Yield ~ Location, A))

A.out

                    Df Sum Sq Mean Sq F value Pr(>F)

Location             2  6.544   3.272   0.687  0.539

Residuals            6 28.593   4.765

B.out = summary(aov(Yield ~ Location, B))

B.out

                    Df Sum Sq Mean Sq F value Pr(>F)

Location                 2  7.562   3.781   2.935  0.129

Residuals                 6  7.729   1.288

C.out = summary(aov(Yield ~ Location, C))

C.out

                    Df Sum Sq Mean Sq F value Pr(>F)

Location             2 25.594   12.80   19.11 0.0025 **

Residuals            6  4.019    0.67

---



Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Ex. 1: Simple Main Effects

Stop and think! Look at the MSE in these simple main effect ANOVAs. They are pretty different. Also, compare

dfresidual to the full model ANOVA. The dfresidual (6) are lower in the simple main effect ANOVAs. Since we are

comfortable that homogeneity of variance is a reasonable assumption for our data, it is probably safe to use

the pooled error for these tests. We can do some calculations to use the pooled error from the overall ANOVA,

and its larger number of df (18).

Use pooled error to calculate F and P values for the simple main effects of Location at Hybrid A, B, and C:

Fhybrid.A <- 3.272/2.241

Fhybrid.A

[1] 1.460062

pf(Fhybrid.A, 2, 18, lower.tail - F)

[1] 0.2584485

Fhybrid.B <- 3.272/2.241

Fhybrid.B

[1] 1.687193

pf(Fhybrid.B, 2, 18, lower.tail - F)

[1] 0.2130147

Fhybrid.C <- 12.80/2.241

Fhybrid.C

[1] 0.2130147

pf(Fhybrid.C, 2, 18, lower.tail - F)

[1] 0.2130147



Notice that the P value (0.012) of the test for Hybrid C is less than 0.05, so we would conclude that the yield of

this type of Hybrid is affected by Location. The F tests of the Hybrid A and B are not signi�cant at P = 0.05, so

we conclude that the yields of these two Hybrids are not in�uenced by Location.



Ex. 1: Plot the Interaction

attach(Ex9.1)

interaction.plot(Location, Hybrid, Yield, col = c("green", "red", "blue"), main="Interaction plot of Hybrids A, B, and

C")

The attach() function can be used to make objects within data frames accessible in R with fewer keystrokes.

The interaction plot shows that the mean response to Location depends upon the level of Hybrid. Also, we know

from our previous tests that Location doesn’t affect the yields of Hybrid A and B, but it has an impact on yield of

Hybrid C.



Ex. 1: Interaction Plot

Looking at this interaction plot, you can see that the rank of each line changes depending on the location. This

indicates that there is an interaction between location and environment, but is this interaction signi�cant? Go

back to the �rst ANOVA that you ran and check to see if the interaction is signi�cant, and in this case it is.

Based on this information you have gathered from the ANOVAs and your interaction plot, which hybrid would

you advance to further testing? Would you choose any hybrid at all? What else do you need to know in order to

make this decision?

Fig. 0



Ex. 1: ANOVA for 10 Hybrids

Now imagine that the following winter you �nd some residual seed and replant the inbred lines that were

destroyed in the tornado. This time the weather is more cooperative and the following summer you are able to

test 10 hybrids at 10 locations (hybrid 10 is the check this time). Use the �le “9.1 larger data set” and run the

same code as before for the full ANOVA and the interaction plot.

set2<-read.csv(”lesson 9.1 larger set.csv”, header=T)

attach(set2)

set2$Location<-as.factor(set2$Location)

Location<-as.factor(set2$Location)

set2$Hybrid<-as.factor(set2$Hybrid)

Hybrid<-as.factor(set2$Hybrid)

detach(set2)

attach(set2)

str(set2)

‘data.frame’:  300 obs. of 8 variables:

 $ Hybrid      : Factor w/ 10 levels “1”,”2”,”3”,”4”,..: 1 1 1 1 1 1 1 1 1 1 ...

 $ Location    : Factor w/ 10 levels “1”,”2”,”3”,”4”,..: 1 1 1 2 2 2 3 3 3 4 ...

 $ Rep         : int  1 2 3 1 2 3 1 2 3 1 ...

 $ overall.Mean: int  170 170 170 170 170 170 170 170 170 170 ...

 $ G           : int  6 6 6 6 6 6 6 6 6 6 ...

 $ E           : num  3.2 11.84 8.05 -1.97 7.41 ...

 $ error       : num  -0.209 -0.941 8.491 1.868 0.953 ...

 $ Yield       : num  179 187 193 176 184 ...

set2out <- aov(Yield ~ Location+Hybrid+Location:Hybrid, data = set2)

summary(Ex9.1.outA)



                Df Sum Sq Mean Sq F value Pr(>F)

Location             9    822    91.3   1.430  0.177

Hybrid             9  18671

Location:Hybrid    

Residuals

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

interaction.plot(Location, Hybrid, Yield, col = c(”green”, “red”, “blue”, “orange”, “black”), main=”Interaction plot of

Hybrids 1-10”)



Ex. 1: Interaction Plot of 10 Hybrids

Looking at the plot, you can see that many of the hybrids change rank in different locations, but if you look at

the ANOVA you can see that despite this the interaction is not signi�cant. In real life, you will likely have even

larger data sets with many individuals in which case the interaction plot will look very messy and even more

di�cult to read. This is why it is important to always check the ANOVA and not just rely on the plot.

Fig. 0



Ex. 1: Review Questions

• What information can you get from an ANOVA?

• How can you use the ANOVA to make selection decisions?

• What is an interaction?

Table 0

R Code Glossary

setwd("") Set the working directory. Make sure to use the �le path where

you downloaded your data sets, and not the example I have

included! 

<- Assignment Operator. Assign value to a variable. Ex: X<-1

means "X gets t". An = sign does the same thing. 

read.csv("") Read in a .csv �le. Make sure your �le name ends in .csv and if

you have column names, you need to specify that header=T

head(mydataframe) Returns the top part of the data set speci�ed in the ()

as.data.frame(mydataframe) Changes the format of an R object (i.e., a data set) to a data

frame. This is one of the more common formats for working

with a data set. 

str(mydataframe) Returns the structure of an R object

attach(mydataframe) Attach an R object so that R knows this is what you want to

work with at this moment. 

detach(mydataframe) Detaches the R object you were working with

as.factor(mydataframe$variance) Changes a variable within an R object to a factor variable. An

example is when you have variables designated with numbers

but they are meant to be categorical variables so you use this

function to tell R that. 

aov(y ~ A + B + A:B,

data=mydataframe)

Perform a 2-factor analysis of variance on an R object.

summary() Returns the summary of an analysis.

subset(mydataframe, variable ==

"variable value")

Subsets a variable within a data frame based on a particular

variable value.



R Code Glossary

pd(F-value, df1, df2, lower.trial = F) Calculate the P-value. Lower.tail=F means P[X > x]

interaction.plot(x.factor,

trace.factor, response,...)

Create interaction plot. X.factor is the factor that forms the

x-axis, trace.factor is another factor whose levels for the

traces, response is the numeric variable giving the response.

You can also add speci�c colors to the plot with col=c"color1",

"color2" and a title with main = "title"



Study Questions

Fill in the missing words

What is the sum of squares for Treatments (Hybrids, Populations, and Interaction)? 

 Check

What would be the correct interpretation of this ANOVA? Note: Use the Fit Model 'Effect Tests'
Table for the subdivision of Treatment into its component parts of Location, Hybrid, and Location *
Hybrid to answer this question.

The difference in treatment means is caused by some interaction of hybrid and location.

The difference in treatment means is caused by location changes.

The difference in treatment means is caused by different hybrids.

 Check

 Check

Which combination of factors seems to have produced the largest treatment effect, i.e., the highest yield?

 and location 3 hybrid A

Would you accept or reject the null hypothesis that treatment effects are the same?

Reject

Accept

 Check



ANOVA and Experimental Design

Experimental Design and Analysis

The Experimental Design Determines The Model And Analysis

You will recall from the module on Basic Principles that experimental design refers to the manner in which

treatments are assigned to experimental units (plots). In this module we have assumed that all treatments are

applied at random to the entire set of experimental units used in the experiment. This is what is known as a

Completely Random Design (CRD). In a CRD every experimental unit has the same chance of receiving any

given treatment.

We use a CRD when we expect the magnitude of the plot effect to be similar among all the plots used in the

experiment. Statisticians refer to this condition as homogeneity, and it is assumed when we use a CRD. The

CRD is a common design (Fig. 0); there are many cases where its use is appropriate. For example, in a growth

chamber we might have 25 �ats �lled with sand, each planted with 30 wheat seeds, 5 reps of each of 5

varieties.

However, whenever there are not enough plots with

similar characteristics to accommodate all the

treatments and replications in an experiment,

alternative designs should be considered to

improve the precision of the experiment. We will

learn more about this as we study other designs in

subsequent modules.

Randomly Assign Treatments

There are many ways to randomly assign

treatments to experimental units. The use of a table

of random numbers is described in the text. This method involves listing all the treatments and their

replications and assigning a random number from a table of random numbers to each one. This random order is

then matched to a predetermined order of experimental units. A far easier approach is to use a computer to

randomize treatments. You can use Excel or R to randomize an experiment.

Fig. 0 Randomization for a CRD with 5 Treatments and 4

Replications.

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/experimental-design
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/experimental-design
https://pbea.agron.iastate.edu/completely-random-design-1
https://pbea.agron.iastate.edu/completely-random-design-1
https://pbea.agron.iastate.edu/homogeneity-0
https://pbea.agron.iastate.edu/homogeneity-0


Ex. 2: Randomized Complete Design using R

R Code Functions

• setwd()

• paste()

• sample()

• <-

• data.frame()

• write.csv()

• read.csv()

• write.table()

• as.data.frame()

• head()

• matrix()

The Scenario

You are an employee for WinField Solutions interested in studying the impact of Japanese beetles (Popillia

japonica) on soybeans and recently two new insecticides have come on the market. To test their effectiveness

against Japanese beetles, you choose to test the insecticides on the three most commonly grown cultivars in

Iowa. You want to design an experiment where each insecticide is paired with each cultivar and replicated four

times. To account for differences within your �eld you want to test these pairs in a completely randomized

design. Ultimately you wish to be able to show clients which insecticide/cultivar pairs are the most effective at

preventing damage from Japanese beetles.



Ex. 2: Activity Objectives

• Randomize a list of all the insecticide/cultivar pairs

• Assemble the list into a rectangular �eld plot

Start by setting the working directory. As always, you need to use your own chosen directory, this is just an

example

setwd("C:/Users/UserName/Desktop/SAS to R")

After you read in the data, be sure to check the head to make sure it was read in properly

crd<-read.csv("Randomization 2factor CRD.csv", header=T)

head(crd)

  Insecticide Cultivar

1           1        1

2           2        1

3           1        2

4           2        2

5           1        3

6           2        3



Ex. 2: Randomize as Pairs

Because we have two types of treatments and we want them to be randomized as pairs, it makes sense to have

insecticide and cultivar treatments be represented as a single value such as ‘1--2’ to represent insecticide 1 and

cultivar 2. It will be up to you to decide which insecticide and cultivar will be represented by each number. To do

this in R, we can merge the two columns and separate them with ‘--‘ with this code:

IC <- as.factor(paste(crd$Insecticide, crd$Cultivar, sep = “--”))

IC

 [1] 1--1 2--1 1--2 2--2 1--3 2--3 1--1 2--1 1--2 2--2 1--3 2--3 1--1 2--1 1--2 2--2 1--3 2--3 1--1 2--1 1--2 2--2

[23] 1--3 2--3

Levels: 1--1 1--2 1--3 2--1 2--2 2--3

Originally I used just one ‘-‘ between the numbers but I found that when I imported this into Excel, it’s read as a

date and it isn’t easy to get Excel to display them properly. Now that we have made a vector of the treatment

combinations, we need to create another vector of numbers that will list the order of the plots, so we need the

list to be the same length as the total number of plots (24). This is important for when we randomize the order.

v<-1:24

v

 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Now we combine the treatments with the vector we just created

data <- data.frame(Treatment=IC, tempplot=v)

data

   Treatment tempplot

1       1--1        1

2       2--1        2

3       1--2        3



4       2--2        4

5       1--3        5

6       2--3        6

7       1--1        7

8       2--1        8

9       1--2        9

10      2--2       10

11      1--3       11

12      2--3       12

13      1--1       13

14      2--1       14

15      1--2       15

16      2--2       16

17      1--3       17

18      2--3       18

19      1--1       19

20      2--1       20

21      1--2       21

22      2--2       22

23      1--3       23

24      2--3       24



Ex. 2: Randomize the Order

Now that we have created the data set that we can work with, we can randomize the order of the treatments.

randdata <- data[sample(1:nrow(data)),]

randdata

   Treatment tempplot

13      1--1       13

22      2--2       22

4       2--2        4

23      1--3       23

2       2--1        2

24      2--3       24

12      2--3       12

17      1--3       17

9       1--2        9

7       1--1        7

18      2--3       18

8       2--1        8

19      1--1       19

21      1--2       21

11      1--3       11

3       1--2        3

20      2--1       20

5       1--3        5

15      1--2       15

6       2--3        6

1       1--1        1

10      2--2       10

16      2--2       16

14      2--1       14

Now if you look at the order of the treatments, you can see that they have been completely randomized.

However, because the list of 1-24 is also out of order, this can be a little confusing if you are trying to get a

planting plan together. We can keep the treatments randomized but we can have the plot numbers be in order

with this code:

treatment<-as.factor(randdata$Treatment)



treatment

 [1] 1--1 2--2 2--2 1--3 2--1 2--3 2--3 1--3 1--2 1--1 2--3 2--1 1--1 1--2 1--3 1--2

[17] 2--1 1--3 1--2 2--3 1--1 2--2 2--2 2--1

Levels: 1--1 1--2 1--3 2--1 2--2 2--3   

treatment<-as.factor(randdata$Treatment)

�naldata

   Treatment tempplot

1       1--1        1

2       2--2        2

3       2--2        3

4       1--3        4

5       2--1        5

6       2--3        6

7       2--3        7

8       1--3        8

9       1--2        9

10      1--1       10

11      2--3       11

12      2--1       12

13      1--1       13

14      1--2       14

15      1--3       15

16      1--2       16

17      2--1       17

18      1--3       18

19      1--2       19

20      2--3       20

21      1--1       21

22      2--2       22

23      2--2       23

24      2--1       24



Ex. 2: Matrix Form

Finally, if you know you want to plant these soybean plants in a rectangular �eld, you can use this code to

convert your randomized treatments to a matrix form.

A = matrix((treatment), nrow=4, ncol=6)

A

     [,1]   [,2]   [,3]   [,4]   [,5]   [,6]

[1,] “1--1” “2--1” “1--2” “1--1” “2--1” “1--1”

[2,] “2--2” “2--3” “1--1” “1--2” “1--3” “2--2”

[3,] “2--2” “2--3” “2--3” “1--3” “1--2” “2--2”

[4,] “1--3” “1--3” “2--1” “1--2” “2--3” “2--1”

Remember, this is a completely randomized design, not a randomized complete block design. You may well

have a �eld design where you have a section of the same cultivar or insecticide repeated several times, but it

will still be random.

You can export your randomized list and �eld layout as a text �le or .csv �le.

write.table(�naldata, �le = “Randomized list.txt”)

write.table(A, �le = “�eld layout.txt”)

write.csv(�naldata, �le = “Randomized list.csv”)

write.csv(A, �le = “�eld layout.csv”)



Ex. 2: Visualizing Results in Excel

This way you can save your results and you can do further visualization in programs like Excel.

For example:

You can start with this and add ranges and row labels to get a clearer idea of what the �eld layout will be like.



Ex. 2: R Code Glossary

Table 0

R Code Glossary

setwd("") Set the working directory. Make sure to use the �le path

where you downloaded your data sets, and not the example I

have included!

<- Assignment Operator. Assign value to a variable. Ex:

X<-1means "X gets 1". An = sign does the same thing.

read.csv("") Read in a .csv �le. Make sure your �le name ends in .csv and

if you have a column names, you need to specify that

header=T.

head(mydataframe) Returns the top part of the data set speci�ed in the ().

as.factor(mydataframes$variable) Changes a variable within an R object to a factor variable. An

example is when you have variables designated with

numbers but they are meant to be categorical variables so

you use this function to tell R that. 

paste(...,sep="") Concatenate strings after using sep string to seperate them. 

paste("x",1:3,sep="") returns c("x1","x2","x3")

paste("x",1:3,sep="M") returns c("xM1","xM2","xM3") 

paste("Today is", date())

data.frame() Combines variables into a single data frame.

sample() Returns a random permutation of a vector.

Matrix((variable), number of rows=,

number of columns)

Takes a vector and transforms it into a matrix with the

speci�ed dimensions of rows and columns. You need row

and column numbers that multiply to be the total number of

individuals or you will get an error. 

write.csv(mydataframe, ".csv") Write your data frame to a .csv �le. 

write.table(mydataframe, ".txt") Write your data frame to a .txt �le. 



Error Structure

Once the randomization is completed and the experiment properly conducted according to plan, the error

structure for the experiment is, at least partially, determined. For the CRD, for example, we do not have a

blocking factor because treatments are assigned to experimental units completely at random. In the module on

Randomized Complete Block Design we will introduce another type of design, the Randomized (Complete) Block

Design, or RCBD, in which some restrictions are put on the randomization. For the RCBD, there is yet another

recognizable source of variation in the ANOVA, that for blocks, as you will see in the module on Randomized

Complete Block Design.



Summary

Factorial Experiments

• Involve more than one treatment factor.

• Allow exploration of combinations of factors, interaction

• Refers to the treatment structure, not how treatments are assigned to plots.

Interaction

• Differential response of one factor at different levels of another.

Linear Model

• Factorial Linear Model is simple extension for more detail on treatment factors and interaction.

Experimental Design

• Determines model and ANOVA.

• CRD has treatments assigned to experimental units completely at random.

https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/multiple-treatment-factors
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/multiple-treatment-factors
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/no-interaction
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/no-interaction
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/linear-model
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/linear-model
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/model-and-analysis
https://pbea.agron.iastate.edu/course-materials/quantitative-methods/two-factor-anovas/model-and-analysis


Reflection

The Module Re�ection appears as the last "task" in each module. The purpose of the Re�ection is to enhance

your learning and information retention. The questions are designed to help you re�ect on the module and

obtain instructor feedback on your learning. Submit your answers to the following questions to your instructor.

1. In your own words, write a short summary (< 150 words) for this module.

2. What is the most valuable concept that you learned from the module? Why is this concept valuable to

you?

3. What concepts in the module are still unclear/the least clear to you?



For Your Information

Experimental Design

EXPERIMENTAL DESIGN ALLOWS RESEARCHERS TO CONTROL
FACTORS INFLUENCING OUTCOMES

Statistical analysis is a powerful approach to understanding collections of data. The analysis employed

depends on the type of data and the manner in which it was collected. There are two broad categories or

approaches to research that commonly are used: observational experiments and designed experiments.

Observational experiments involve collecting data from a population of individuals to which no treatments have

been applied. They are descriptive in nature and usually involve studying the relationships among two or more

variables of interest. It is important to understand that the variables studied in an observational experiment

occur naturally and are not manipulated by the researcher in any way. An example of an observational

experiment would be a comparison of groundwater nitrate concentrations among several Iowa counties.

Designed experiments differ from observational experiments in that data are collected from units that have

been manipulated by the researcher in some way before the data are collected. This is often described as

applying treatments to experimental units. Some good agricultural examples of treatments are the application

of speci�c fertilizer rates and the planting of speci�c crop varieties for the purposes of comparison. In

agronomic terms, the smallest entity to which treatments are applied is usually a �eld plot.

SOME CHARACTERISTICS OF DESIGNED EXPERIMENTS

• Replication - treatments are repeated two or more times on different experimental units (plots)

• Randomization - treatments are randomly assigned to experimental units (plots)

• Design Control - how treatments are applied to various groupings and sizes of experimental units

(subplots, plots, blocks, locations)

https://pbea.agron.iastate.edu/observational-experiments-2
https://pbea.agron.iastate.edu/observational-experiments-2
https://pbea.agron.iastate.edu/designed-experiments-2
https://pbea.agron.iastate.edu/designed-experiments-2
https://pbea.agron.iastate.edu/treatment-1
https://pbea.agron.iastate.edu/treatment-1
https://pbea.agron.iastate.edu/experimental-unit-0
https://pbea.agron.iastate.edu/experimental-unit-0
https://pbea.agron.iastate.edu/replication-1
https://pbea.agron.iastate.edu/replication-1
https://pbea.agron.iastate.edu/randomization-6
https://pbea.agron.iastate.edu/randomization-6
https://pbea.agron.iastate.edu/design-control-3
https://pbea.agron.iastate.edu/design-control-3
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