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Introduction

Estimating heritability is a fundamental concept of quantitative genetics. One method for obtaining estimates

of heritability is the use of variance and covariance of a known collection of relatives from various types

of progeny.

Objectives

• Model components of genetic variances and covariances for purposes of estimating heritability, a

fundamental concept of quantitative genetics.

• Explain why estimates of components of genetic variability are limited to the population from which they

are estimated.

• Students will derive variance components and recognize the differences amongst components obtained

from different progeny used for estimating heritability.

• Students will write out the correct linear models for the correct mean squares and expected mean

squares in a ANOVA table, and correctly interpret the ANOVA and algebraically extract the correct values

for estimating heritability.

• Leverage of the powerful algebraic equivalence of covariances within groups of relatives to variances

among the same groups.



Covariance of Relatives

Recall that Cov(Yij,Yij’) = Var(Gi), for j ≠ j’. In the context of genotypic sampling of relatives, this general

relationship has a profound and powerful impact on interpretation of ANOVA. It means that the covariance

among a sample of relatives can be used to estimate components of genetic variance associated with

the genotypic effect. 

Note that there are p progeny grown in r reps. Cov(progeny) refers to the covariance of the progeny, where the

progeny can be full-sibs, half-sibs, S1-progeny, S2-progeny, testcross progeny, etc. The key is to know the

progeny type and take advantage of the general rule that the variance among progeny is equal to the covariance

of the progenies. 

Note the use of σ2T instead of σ2G in the within progeny line of the ANOVA table. This is because σ2G is usually

equal to σ2A + σ2D the total variance in a non-inbred random mating population. If the population does not have

a random mating structure, then the total variance will be something other than σ2A + σ2D. For example, the

total genetic variance for an F3 population is

Table 1 A general ANOVA table for any type of related progeny.

EMS

Source df MS Variances Covariances

Reps      

Progeny  

Error

Total      

Within

Progeny



Linear Models for Phenotypic Values

Linear Models for Phenotypic Values

The covariance of relatives is simply that relatives tend to show more phenotypic similarities than with each

other than with unrelated individuals. For example let Xij represent an individual from the mating of parent i and

parent j: 

Specifying covariance of relatives in terms of genetic variances has the following assumptions:

1. Regular diploid and solely Mendelian inheritance

2. No environmental correlations among relatives

3. No gametic disequilibrium

4. The relatives are not inbred

5. The relatives are considered to be random members of some non-inbred population

With these assumptions, we can specify the covariance of relatives as follows:

where α is the coe�cient of relative relationship, σ2A is the additive genetic variance, δ is the dominance

relationship coe�cient, σ2D is the dominance variance, σ2AD, σ2AAA, ... are the epistatic variances.

Table 2 Descriptions of relationships between individuals Xij and Xi’j’.

Conditions Description

Full-sibs

Recripocal Full-sibs

Maternal half-sibs

Paternal half-sibs

Equation 1



Common Types of Relatives

Using the result of Equation 1 for some common types of relatives it can be shown that: 

Covariance of half-sibs with one common parent is:

Covariance of full-sibs with parents A and B is:

F2 and F3 progenies 

Table 3

 

 

Genotype

 

 

Freq

 

 

GV

F3 Progeny  

 

F3 Progeny MeanAA Aa aa

AA 1/4 a 1 0 0 a

Aa 1/2 d 1/4 1/2 1/4 1/2d

aa 1/4 -a 0 0 1 -a



F2 and F3 Variances

Total genetic variance among F2 individuals:  

Total F2 phenotypic variation:

where E1 is the non-genetic variation among F2 plants.

Recall that the F2 is our reference population for interpretation of genetic results. To estimate the total genetic

variation of an F2, we need the parents and the F1 (to estimate environmental effects) and the F2 generation.

F3 population mean:

Variance among F3 progeny means: 



F3 Variances

Variance within F3 progeny means: 

Total variance among F3 individuals is then: 

F3 progenies can be grown in replicated trials, so a set of equations like the following could be written:



ANOVA for F3 Progenies

ANOVA for F3 progenies can be calculated from a replicated experiment. 

Then:

Note that the phenotypic variance among F3 families is:

Table 4 ANOVA for F3 Progenies.

Source df MS EMS

Reps    

Progeny M3

Error M2

Total    

Within Progeny M1



Estimate of Heritability

A type of heritability estimate on a progeny mean basis can be calculated as: 

Note that this estimate of heritability contains both additive and dominance variance. Recall that this is an

estimate of intra-class correlation, thus it is a type of broad sense heritability.

Limitations of this method (often referred to as Mather’s methods)

1. Estimates apply only to speci�c parents.

2. Estimates for σ2E1 may vary among generations

3. Estimates for a particular set of F2 plants can be obtained in only one environment

4. Linkage will bias estimates

5. Epistasis is assumed to be absent



Bi-Parental Progenies

Bi-parental progenies are just crosses between individual plants, thus genetically they are full-sib. For example,

in a random mating maize population you could cross two individual plants reciprocally and bulk the seed from

the two ears. This would produce enough seed to plant FS progeny in 10-20 replications. We could then think

about n plants and making n / 2 full-sib families. 

Divide Error and Total in table with a horizontal line.

Table 5

Source df MS EMS

Reps    

Among

families

Error

Total    

Within

families



Summary

Table 6 Data from Cockerham, 1993.

Progeny

Type

Cov(progeny)

Half-sib

Full-sib

S1(F2:3)

S2(F3:4)

Sn(F4:5)

S∞



Expected Mean Squares

The AOV tables cannot be interpreted without understanding the expected sources of variability represented by

the Mean Squares. In the case of balanced �eld plot designs with only a few sources of variation the expected

mean squares are easily determined. If a particular design involves many sources of random and �xed factors,

students have found the approach of Lorenzen and Anderson (1993, Design of Experiments: A No-Name

Approach. p 71-72) to be useful.

1. Write the terms of the model with associated subscripts down the left side of the page. Across the top

write the single letter subscripts (i,j,k, etc.). Above each subscript place either F or R if the factor

associated with that transcript is �xed or random. Above that place the number of levels associated with

that subscript (I,J,K, etc.).

2. Enter a 1 in every slot where the subscript at the top is contained within brackets in the term at the left.

3. Enter a 0 in every slot where the subscript at the top is �xed and also contained in the term as the left.

Enter a 1 in every slot where the subscript at the top is random and also contained in the terms at the left.

4. Fill in the remaining slots with the number of levels at the top of each column.

5. To compute the Expected Mean Squares (EMS) for a given term having df > 0, start at the bottom and

work up. Only consider terms whose indices include all the indices in the term whose EMS you are

deriving. Compute the coe�cient of this term by covering the columns corresponding to the indices in the

term whose EMS you are deriving and multiplying the values in the remaining columns. If there is a 0

column that is not covered, this term need not be written in the EMS. A factor is considered �xed and

denoted with a Φ only if all of its indices are �xed. Otherwise it is considered random and denoted by the

appropriate σ2 term.



Using the Algorithm

Notice that this algorithm can be used to compute EMS for all terms in the model, including those that have

zero df. A term that has zero df has no expected mean squares. For this reason, we will not compute EMS for

terms having zero df even though such terms are in the algorithm to make the EMS of the other terms come out

right. Note that this simple algorithm for determining the EMS in an AOV assumes that the data are balanced,

i.e., each of the sources of variability (model parameters) have data for all levels, i, j, and k.

To illustrate, let’s consider a slightly more complex, but typical RCBD design used by plant breeders to evaluate

many genotypes grown in replicates at several environments for purposes of identifying and discarding poor

performing genotypes in a cultivar development project.

Step 1

The phenotype Y for this typical �eld trial will be something like:

Notice that this algorithm can be used to compute EMS for all terms in the model, including those that have

zero df. A term that has zero df has no expected mean squares. For this reason, we will not compute EMS for

terms having zero df even though such terms are in the algorithm to make the EMS of the other terms come

out right. Note that this simple algorithm for determining the EMS in an AOV assumes that the data are

balanced, i.e., each of the sources of variability (model parameters) have data for all levels, i, j, and k.

To illustrate, let’s consider a slightly more complex, but typical RCBD design used by plant breeders to

evaluate many genotypes grown in replicates at several environments for purposes of identifying and

discarding poor performing genotypes in a cultivar development project.

Step 1

Write the terms of the model with associated subscripts down the left side of the page. Across the top write the

single letter subscripts (i,j,k, etc.). Above each subscript place either F or R if the factor associated with that

transcript is �xed or random. Above that place the number of levels associated with that subscript (I,J,K, etc.).

Factors:

Factor E – Fixed

Factor G – Random

Blocks – Random

Source E G R EMS



F R R

i j k

       

       

       

       



Step 2

The phenotype Y for this typical �eld trial will be something like:

Step 2

Enter a 1 in every slot where the subscript at the top is contained within brackets in the term at the left.

Factors:

Factor E – Fixed

Factor G – Random

Blocks – Random

Source E G R EMS

F R R

i j k

       

    1  

  1    

1 1    

1 1 1  



Step 3

The phenotype Y for this typical �eld trial will be something like:

Step 3

Enter a 0 in every slot where the subscript at the top is �xed and also contained in the term as the left. Enter a 1

in every slot where the subscript at the top is random and also contained in the terms at the left.

Factors:

Factor E – Fixed

Factor G – Random

Blocks – Random

Source E G R EMS

F R R

i j k

0      

0   1  

  1    

1 1    

1 1 1  



Step 4

The phenotype Y for this typical �eld trial will be something like:

Step 4

Fill in the remaining slots with the number of levels at the top of each column.

Factors:

Factor E – Fixed

Factor G – Random

Blocks – Random

Source E G R EMS

F R R

i j k

0 G R  

0 G 1  

E 1 R  

1 1 R  

1 1 1  



Step 5

The phenotype Y for this typical �eld trial will be something like:

Step 5

To compute the EMS for a given term having df > 0, start at the bottom and work up. Only consider terms whose

indices include all the indices in the term whose EMS you are deriving. Compute the coe�cient of this term by

covering the columns corresponding to the indices in the term whose EMS you are deriving and multiplying the

values in the remaining columns.

If there is a 0 column that is not covered, this term need not be written in the EMS. A factor is considered �xed

and denoted with a Φ only if all of its indices are �xed. Otherwise it is considered random and denoted by the

appropriate σ2 term.

Factors:

Factor E – Fixed

Factor G – Random

Blocks – Random

Source E G R EMS

F R R

I j k

0 G R

0 G 1

E 1 R

1 1 R

1 1 1
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