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Objectives

• Conceptual types of GxE interactions

• Decompose GxE interactions into heterogeneous variability and inconsistent rankings

• Leverage information on heterogeneous variance and inconsistent rankings to meet breeding objectives



Introduction

One of the most di�cult aspects of plant breeding involves making decisions about environments to target for

development of new cultivars. This challenge is not especially di�cult if cultivars are adapted to large

geographic regions with little variability among environments, or if there is signi�cant variability among

environments, but potential cultivars respond similarly to the environmental differences. However, if potential

cultivars do not respond similarly to environmental differences within a targeted set of environments, i.e., there

are genotype by environment interactions, decisions on which genotypes to develop can be di�cult. Herein, we

explore the impacts of environments on genotypes in cultivar development programs.



Environmental Components of Variance

Recall that our working model for the phenotype includes genotypic and non-genotypic (environmental) sources

of variability: 

Brie�y we consider the components of E. 

Equation 1

Fig. 1 Illustration of relationships among environments, genotypes and phenotypes. 



Many Meanings of Environment

Micro-environmental effects – the environment of a single organism as opposed to that of another growing at

the same time and in almost the same place.

• All things except genotype that affect a plants development. Note that the probability that two plants in

the same �eld will experience the same environment is in�nitesimally small.

◦ Physical and chemical properties of the soil

◦ Climatic variables (rain, temperature, etc)

◦ Solar radiation

◦ Biotic stresses

Macro-environmental effects – the general environment associated with a �eld site over a period of time.

• Different class of environments in one area or time than another

• A collection of micro-environments



Environmental Sources of Variation

Environmental sources of variation can also be hierarchically modeled to consist of variability among

environments and within environments: 

From the beginning of �eld assessments of clonally propagated plants we have been able to recognize

variability within and among locations (environments). As soon as we could evaluate more than one replicated

genotype, we also began to recognize patterns of phenotypic responses to environments. In 1964, Allard and

Bradshaw provided a simple classi�cation scheme of the types of phenotypic responses that could happen

using two genotypes (designated A and B) and two environments (designated X and Y). The �rst type of

response reveals that there is a differences of 2 units between the genotypes, and a difference of 1 unit

between the environments (Fig. 2). They also recognized a second type of response in which the difference

between genotypes was one unit while the difference between environments was 2 units.

Equation 2

Fig. 2 Pij = µ + Gi + Ej



Simple Types of GxE Interactions

Type 3 GxE Interaction

Allard and Bradshaw recognized that there could be a lack of consistent responses by two different genotypes

in two environments. The lack of consistent responses by genotypes to different environments had been

recognized as genotype by environment interactions since the beginning of replicated trials and Allard and

Bradshaw classi�ed these into four types of GxE for two genotypes in two environments.

A type 3 GxE response (Fig. 3) was based on heterogeneity of genotypic variability between environments.

Assuming that larger phenotypic values are desired, in GxE types 1,2 and 3, genotype A is better adapted to both

types of environments.

Fig. 3 Pij = µ + Gi + Ej + GEij



Type 4 GxE Interaction

A type 4 GxE interaction is due to a combination of heterogeneous genotypic variability and a failure of the

genotypes to have correlated responses (change of rank) across the environments (Fig. 4).

Fig. 4 Pij = µ + Gi + Ej + GEij



Type 5 GxE Interaction

A type 5 GxE is due to a failure of the genotypes to have correlated responses across the environments, while

the genotypic variability is homogeneous between the environments (Fig. 5). If environments X and Y represent

typical types of environments in a market, then there are unique best genotypes for each type of environment;

neither is broadly adapted to both environments.

Fig. 5 Pij = µ + Gi + Ej + GEij



Type 6 GxE Interaction

A type 6 GxE interaction illustrates a ‘racehorse’ response by Genotype A. It takes full advantage of favorable

environment X, while failing under the stressful environment Y. This type of GxE also illustrates a more ‘stable’

response by Genotype B. The question for the plant breeder is whether to develop both types of cultivars or just

one. 

Fig. 6 Pij=µ+Gi+ Ej+GEij



Complex Types of GxE Interactions

As the number of environments and genotypes increase, the ability to sort out the types of GxE interactions

becomes more di�cult. For example, consider the data and plot in Fig. 7. It is likely that all types of GxE

interactions are present in these data. If all types of GxE are present, are there prevalent types of GxE? Do the

genotypes behave the same way in some pairs of environments? 

To answer these questions, multi-variate statistical techniques, sometimes referred to as pattern analyses, are

used to discover and summarize consistent patterns in large data sets.

Fig. 7 Sample of yield values from ~100 entries take at three environments from a 6500 entry trial grown at 20

environments. What is the nature of GxE between all pairs of environments(1:2, 1:3, 2:3)?



Pattern Analysis Methods

A partial listing of these pattern analysis methods would include: Cluster Analyses (CA), Principal Component

Analysis (PCA), Additive Main and Mulitplicative Interaction (AMMI) models, Sites Regression models, Partial

Least Squares, Factorial Regression, Linear Bilinear Mixed Models, Generalized Linear Models, Support Vector

Machines, Bayesian Networks, Reproducing Kernel Hilbert Spaces, etc.

Development of of these methods was motivated by the need to �nd patterns in physical and chemical spectra

25 to 50 years ago. These methods began to be applied by ecologists in the 1970s, GxE challenges in plant

breeding during the 1990s and to �nd patterns in ‘omics’ data during the 2000s. The application and

interpretation of the methods in GxE continue to be an active area of research and well beyond the scope of an

introduction to GxE.



Cluster Analyses

Herein we introduce an application of multi-variate techniques to �nd patterns in GxE interactions using

Cluster Analyses. The purpose for applying CA is to either: 1. organize the environments into homogeneous

groups of environments so that there is no GxE interactions within environments and to emphasize (maximize)

the differences between homogeneous groups of environments or 2. organize the genotypes into groups with

no GxE within the groups and maximize our ability to identify genotypes that have different responses to

environments.

Cluster analyses require a metric that quanti�es dissimilarities among all possible pairs of units that we wish to

cluster. There are many possible distance metrics that could be used. The most commonly used metric for CA

of environments based GxE is the Euclidean distance.

Fig. 8 Pythagoras’ theorem extended into three-dimensional space.



Euclidean Distance

For a trait such as yield it is advisable to �rst standardize the values so that all of the yield values are on the

same scale: Calculate the average and standard deviation for each location, subtract the average value from the

genotypic value and divide by the standard deviation for each of the genotypes by location. Next calculate the

Euclidean Distance of the standardized yield values between all possible pairs of environments.

CA also requires that we choose a grouping algorithm. There are dozens of clustering algorithms and none

should be considered ‘best’ because there are no objective criteria that can be applid to all data sets. For

purposes of interpretation using yield data with evidence of GxE, I prefer to use an agglomerative hierarchical

clustering technique such as Ward’s (also known as incremental sums of squares) or the Unweighted Pair

Group Method with Arithmetic mean (UPGMA, also known as average linkage clustering). Cooper and DeLacy

(1994) prefer Ward’s, but for the novice it is usually good to try several grouping algorithms for purposes of

comparison based on the goals of the breeding project.



Variation Flux

One of the fundamental questions that a breeding project needs to decide is whether to develop broadly

adapted cultivars or speci�c cultivars for speci�c environments. Often this is determined by production and

marketing considerations, but there is also an issue of identifying the types of environments that the crop will

encounter within a marketing region. In order to assess the types of environments, the breeder needs to sample

the total population of macro-environments using a sample of genotypes. There will clearly need to be trade-

offs between these two sampling objectives. Decisions on the trade-offs could actually bias the results that one

obtains because genotypic variances can be confounded with GxE variances and vice-versa.

To illustrate, consider Fig. 9, where A represents a population of macro-environments and S is a subset of

macro-environments.

Let A serve as our reference population of environments.

It can be shown (with a little algebra) that 

A consequence is that if the subset population of environments, S, is made more homogeneous (smaller subset

of the total), then genotypic variance will increase because GS interaction variance will decrease. Alternatively,

expansion of the targeted subset S of environments will result in a more heterogenous subset which will, in

Fig. 9 Illustration of targeted sets of environments.



general, increase GS interaction variance at the expense of genetic variance. The challenge is to subdivide an

original set of environments so that subdivision are clearly delineated and substantially more homogeneous. If

the market analysis then reveals that multiple sub environments should be served it will require an increase in

the breeding effort since one breeding program needs to be replaced by multiple breeding projects. 



Partition of GxE Variances

GxE variances can be partitioned into two components:

• due to heterogeneity of genotype variance among environments, and

• due to lack of correlation of genetic performance among environments.

Muir et al (1992), provided the means for calculating these two components.



Muir's Partition Method

Given a model for the phenotype: 

Equation 3

Equation 4



GE Interaction Equation

The GE interaction can then be expressed as: 

These results then allow the GE interaction sums of squares to be partitioned into a term due to heterogeneous

variance, SS(HV)ii’, and that due to imperfect positive correlation of the pair, SS(IC)ii’. 

Equation 5



Interaction Components

While the �rst components can be derived from ANOVA results of single environments using the genotypic

variance in each environment and their average, the second component can then be calculated using estimated

variance component (EMS) for G x E over all environments and genetic variance component over all

environments.

Click here to see the first component

Click here to see the second component

Click here to the combination of both components



Example Data Sets 1 and 2

To visualize the relative in�uence by heterogeneity of genotypic responses and lack of correlations among

genotypes consider the following example data sets. 

In the �rst two example data sets G x E is fully explained by one of its two components. In the �rst case, all G x

E is due to heterogeneity of genotypic variance among environments. In the second case, G x E is completely

due to lack of correlation of genotypic performance among environments.

Fig. 10 GxE due to heterogeneity of environments (data set 1) and lack of correlation among lines (data set 2).



Example Data Set 3

A more realistic example can be found in data set 3, where the GxE is due to a mixture of both components. It

is, however, worthwhile to look at their partial contribution; genotypic heterogeneity explains only 18% of GxE

interaction, the lack of correlation (consistent ranking) explains 82%. 

In the early stages of a breeding project thousands of genotypes might be evaluated in two or three

environments or a few hundred genotypes might be evaluated in dozens of environments. In such situations, the

simple graphical representations (Figs. 2-6) and partitioning of GxE variances (Equations 1-5) become very

di�cult to interpret.

Fig. 11 GxE due to both heterogeneity of environments and lack of correlation among lines.



Alternative Analyses

There are alternative analyses and visualization techniques that are used to interpret data from large numbers

of genotypes grown in large numbers of environments. For example, pattern analyses employ measures for

similarity or dissimilarity to group environments and lines for interpretable graphical representations of

either genotypic or environmental performance. Consider the following as illustrated examples based on the

data represented in Fig. 11. 

In Fig. 12 we have clustered Environments A and C because the genotypes respond to these environments

almost identically and very differently from the manner in which they respond to environment B.

Fig. 12 Grouping of environments based on similar genotypic responses.
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Grouping Similar Responses

In Fig. 12, we also recognize that Genotypes (lines) 2 and 4 respond to the environments in a similar manner, so

we cluster these together and represent the response patterns of genotypes as 3 distinct patterns. 

Fig. 13 Grouping of lines with similar responses in 3 environments.
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Grouping of Lines and Environments

In Figures 12 and 13, either lines or environments are grouped for similar performance. In Fig. 14, both

groupings are shown in the same graph. Simple means of groups were taken to give an example for

simpli�cation of G x E interactions. 

For more complex data sets, measures for similarity and disimilarity of performance of genotypes can be used

to summarize differences in genetic performance of the genotypes in environments j and j’. We can denote such

difference measures as Dg(jj-). We can also consider a measure of a difference, designated as De(ii’-) between

environments j and jm the way in which they discriminate between the genetic performance of genotypes.

DeLacy and Cooper (1990) and DeLacy et al. (1990a) discussed alternative forms of De(jj-) which have been

used for pattern analysis of relationships among environments in METs .”(Cooper and Delacey 1994)

Fig. 14 Grouping of lines and environments. 
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Flux between Genotypic Variance and GE Interaction Variance

One of the fundamental questions that a breeding project needs to decide is whether to develop broadly

adapted cultivars or speci�c cultivars for speci�c environments. Often this is determined by production and

marketing considerations, but there is also an issue of identifying the types of environments that the crop will

encounter within a marketing region. In order to assess the types of environments, the breeder needs to sample

the total population of macro-environments using a broad sample of genotypes. There will clearly need to be

trade-offs between these two sampling objectives. Decisions on the trade-offs could actually bias the results

that one obtains because genotypic variances can be confounded with GxE variances and vice-versa.

To illustrate, consider Figure MET.12, where A

represents a population of macro-environments and

S is a subset of macro-environments.

Let A serve as our reference population of

environments.

It can be shown (with a little algebra) that 

.

A consequence is that if the subset population of

environments, S, is made more homogeneous

(smaller subset of the total), then genotypic

variance will increase because GS interaction variance will decrease. Alternatively, expansion of the targeted

subset S of environments will result in a more heterogeneous subset which will, in general, increase GS

interaction variance at the expense of genetic variance. The challenge is to subdivide an original set of

environments so that subdivision are clearly delineated and substantially more homogeneous. If the market

analysis then reveals that multiple sub environments should be served it will require an increase in the breeding

effort since one breeding program needs to be replaced by multiple breeding projects.

Figure MET.12. Illustration of targeted sets of environments.



Impact of Multiple Environments

From an introductory course in statistics, we were taught that the phenotypic variance on an entry means basis

can be obtained directly from Ordinary Least Squares (OLS) ANOVA by equating the estimated Mean Squares

(MS) with Expected Mean Squares (EMS). This is also known as the Method of Moments (MM see Review

Module on Statistical Inference). Thus, an estimate of sp2 on an entry mean basis is equal to 

Where,

MSg is mean square value of genotype (g) in the ANOVA table

2
g is genotypic variance

2
ge is genotype by environment interaction variance

2  is error variance of the error term, 

r is number of replications

The ability to replicate genotypes and grow them within plots that can be replicated enables the plant breeder to

“adjust” their precision around their estimates.



Variance Component Estimation Example

Let’s consider a typical plant breeding �eld trial in which location and year combinations are considered as

unique environments. Let there be e combinations of years and locations. Also assume the genotypes, g, are

grown at the same locations in each year. 

Source d.f. Mean Sqare EMS

Environments (E) (e-1)    

Reps within E (R) e(r-1)

Genotypes (G) (g-1) M1

G x E (g-1)(e-1) M2

Residual e(g-1)(r-1) M5



Estimators

Employing the MM approach we can obtain estimates of the variance components and thus an estimate of the

Covariance of the genotypic units. 

Function Variance Estimated



Application Notes

Application of the MM is appropriate only if the data are from a balanced experiment, i.e., the number of

genotypic units is the same across reps and environments. In the review module we employed lsmeans to

obtain adjusted estimates of entry means in the case of unequal replication per environment. However, we did

not learn how to obtain estimates of the variance components for unbalanced data sets.

If there are only a few missing values (say < 5%) from some replicates, then the impact on the estimates of

variance components will not be very great. However, we often design experiments to take advantage of seed

supplies which may vary greatly among our genotypic units. In such cases the coe�cients of the variance

components are not equal to the products of the numbers of reps and environments represented in the EMS.

Addressing this issue is fairly straightforward (Milliken and Johnson, 1992). A more di�cult problem is that the

estimates of the variance components themselves are no longer the “best” estimates. The solution, as

described by Holland et al (2003) is to obtain Restricted Maximum Likelihood (REML) estimates in a Mixed

Model Procedure (MMP).
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