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Objectives

m Conceptual basis of mixed linear models
m Review matrix algebra
® The meaning of BLUE and BLUP
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Two Linear Models
SCALAR NOTATION
Throughout this course we utilize two types of models to analyze data:

Y;:BH"'Blal +€£j

Equation 1
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Equation 2

The parameters of Equation 1 represent the intercept and slope of a line that can be fit to data
consisting of pairs of genotypic values, G, and Phenotypic responses, where the genotypic values are
continuous and known (i.e., measured without error) while the phenotypic data are measured with
error in plots (experimental units). The parameters of Equation 2 represent a population mean,
genotypic units, g, r. replicates of the genotypic units and the phenotypic, Y, responses. The genotypes
are usually categorical designators of distinct segregating lines and cultivars while the phenotypic data
are measured with error on these genotypes in replicated plots (experimental units).
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Scalar Notation

We typically estimate the parameters of Equation 1 using least squares regression methods. These
methods are based on the idea of minimizing the squared differences between the model parameters
and the measured phenotypic value:

l’IllIl(K er [6“ +61G5])2

Equation 3

Taking the partial derivatives of Equation 3 with respect to B, and B, and setting the resulting two
equations = 0, we find that

31 o [V(Gx)]_l [COV (G.-' K)] and Bn = 1}_ 81)_(
The result is a prediction equation:

ﬁ:3n+31X;

Equation 5

Note that the predicted values are placed on the fitted line. Such values are sometimes referred to as
‘shrunken’ estimates because relative to the observed values they show much less variability.

If it were possible to obtain the true genotypic values, G, then we could routinely use [LMM.1] to
predict phenotypic performance of individual i. Instead, plant breeders have used [LMM.2] and its
expanded versions to evaluate segregating lines and cultivars.
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Two Linear Models
MATRIX NOTATION
Equation 1 also can be represented as

y=Xf{t+e

with 3= (X'X)™ (X’Y)

and Equation 2 could be represented as

y=Xr+Zg-+e
although Equation 2 is usually represented as

y=Xb+Zu+e&

which the beginning student often mis-interprets as the matrix form of Equation 1 with an added set of
parameters Z. The matrix form of Equation 2 is actually a mixed linear model equation and not a simple
expansion of the matrix form of Equation 1.
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Henderson’s Concept

C.R. Henderson recognized the challenge of prediction using models such as Equation 2 and addressed
it using the concept of shrinkage estimators for the genotypic units in the model. Note that the fitted
regression line provides predictions that are ‘shrunken’ to the line rather than scattered around the
line. Henderson's idea, first published in 1963, was framed in the context of the matrix form of
Equation 2, but can be explained using scalar algebra.

First, let's obtain phenotypic averages for each genotypic unit. Next minimize the difference of
E(w, [‘:_:__—,u] = gi_)z, where E represents the expectation,represents the average for the genotypic unit, m

is the population mean and g, is the genotypic value from the scalar version of model Equation 2. In
this case we need to find a value of w_that will assure that the sum of the squared differences is
minimal. As with Equation 3, a little knowledge of how to obtain partial derivatives provides the
answer:

o’
ol+o?)/r

Equation &

W; —
(

This is known as the intra-class correlation coefficient. It is also known as the broad sense heritability,
but for now we will refer to it as a shrinkage factor. When w, is muitiplied by (Y, - m) it will provide the
Best Linear Unbiased Predictor of g. Notice that the predictions of genotypic values are scaled towards
the mean BV, which by definition is zero.
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Example Prediction 1
If the overall mean is the only fixed effect (one environment), all lines are unrelated to each other, and
the data are balanced, then:

w; =w(Y;—Y)
Shrinkage factor

If w is equal to zero, Clj would be zero.

If w is equal to one, ﬁj equals the phenotypic values.

Let’s demonstrate this with a simple data set in which four unrelated lines (A,B,C,D) were evaluated
(t/ha) in hybrid combination with a single tester (Z) in single rep tests at N environments. For this
simple example we are only interested in the impact of number of environments (replicates) on w. and
its subsequent impact on the predicted value for each g.. Also, assume that the residual variance,

o2= 40.
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Summary Data

Hybrid Y, iy Y-Y, N, w(Y.-Y..) N2 wi(Y.-Y..)
Ax/ 7 10 -3 10 -2.5 2 -1.5

BxZ 9 10 -1 10 -0.83 2 -0.5

CxZ 11 10 1 10 0.83 2 0.5

DxZ 13 10 3 10 2.5 2 1.5

Table 1. Summary data of four inbreds evaluated in hybrid combination with one tester (Z) in
single rep tests at 10 environments.

Prove for yourself that the estimated o? = 20,

Some things to notice from the table:

B The data are from balanced trials, i.e., all genotypic units are evaluated in the same number of
environments (either 2 or 10).

m With a large N, the observed differences will be equal to the predicted values.

®m For balanced trials, shrinkage does not change the relative ranking.

In essence the shrinkage predictor provides us with a value that not only includes the difference
relative to the mean, but also weights it by our confidence in the magnitudes of the differences from
the overall mean.

We need to consider how to obtain predictions for genotypic units in the more likely situations where
not all genotypic units (lines, cultivars, hybrids) will be evaluated equally in all environments. Indeed,
we now find it possible with marker technologies to predict the values of the genotypes before they
have been grown.
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Matrix Algebra
DEFINITIONS AND NOTATION

A matrix is a collection of numerical values arranged in rows and columns. Herein, the elements of a
matrix are enclosed in brackets. For example,

i Ay
A =
a2 A

is a matrix with 4 elements arranged in 2 rows and two columns. Matrices with more than two or more
rows and columns are denoted with upper case bold letters. Vectors are a special type of matrix with
only one row or one column.

I
i)

For example, &L — or Y — [yl Yo y:i]_
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Special Kinds of Matrices

Vector matrices are denoted with lower case bold italicized letters. A matrix consisting of only one row
and one column is referred to as a scalar. A square matrix has the same number of rows and
columns. A diagonal matrix is a square matrix with off-diagonal elements equal to 0. An identity
matrix is a diagonal matrix with diagonal elements = 1. The identity matrix is almost always

denoted 1.
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Matrix Algebra
OPERATIONS
Matrices must be conformable, i.e., matrix operations have requirements on the numbers of rows and
columns.

It is possible to add or subtract two matrices, but only if they have the same numbers of rows and
columns. For example,

Ci1 Ci2 Ci3 ain — bn iz — bm oS, 513
= — Ca1 C22 Co|— | QA2 — b:zl a2 — b:z:z dira b;e:;
_(?31 C32 C:g:;_ _(1,31 — 531 A3 — b:;-g lag " b:g:g_

It is possible to multiply a matrix by a scalar by a matrix by simply multiplying all elements of the
matrix by the scalar value, v.

va; va;: vdgs
thus D = 0vA = Av =D =|vas va» vaxs
VUVl Vdzr VA
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Multiplying Vectors
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It is possible to multiply two vectors, but only if 1) one of the vectors is a row vector, 2) the second is a
column vector, 3) the row vector has as many elements as the column vector. For example,

[1 3 5] 4 is a legal operation, whereas

_6_

|

3 [2 4 6] is not.

The operation of vector multiplication in the first instance indicates that we have a 1x3 matrix
multiplied by a 3x1 matrix. The way we carry out the vector multiplication is to multiply the elements
from each matrix in a pairwise manner, then sum the results of all 3 pairs:

[0 25

4

=1 X2+3X4+5X6=44.
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Multiplying Vectors
We could also apply the rule of multiplying and summing pairs of elements to the reverse arrangement
of these two vectors: & ] )
2 2 6 10
411 3 5]=14 12 20
6 6 18 30

Notice that the order of arrangement of vectors matters. Likewise, the arrangement of matrices that
are to be multiplied matters. Virtually all types of matrix multiplication involve the multiplication of a
row vector by a column vector. In essence we partition each matrix into a set of row and column
vectors, then apply the rules of vector multiplication.




? Quantitative Genetics
&

yg Multi Environment Trials: Linear Mixed Models

Matrix Multiplication

Let's consider C=AB. c. = a.b. , where a,. is the i*" row vector of A and b., is the j* column vector of
B. For example, 1 7 -

A= B=|9 —2
_6‘_

then ¢ — (ll.b.l = [2 8 _1]

N

=2X1+8X9—1X6=068

6
and ¢, = al.b.g — 1, Col — @2.5.1 — 81 Coh— (I;z.b.1 =21
68 1
ol b 2l

Notice that matrix multiplication requires that the first matrix must have as many columns as the

second matrix has rows. Thus, AB is usually not equal to BA. Indeed, while AB may be possible, BA
may not. Lastly verify for yourself that IA, IB and Ix = A, B and x respectively.

andABZ[ ]ZC
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Additional Important Operations

The transpose of a matrix, denoted as A" (or A* or AT") is a useful operation in which the first row of a
matrix becomes the first column of its transpose, while the second, third, ... etc rows become the
second, third, ... etc columns of its transpose. For example,

[28 -1
36 4

A =8 6
__1 4_

The inverse of a matrix is best understood by recalling that in scalar algebra the inverse of a number
multiplied by the number will be = 1. Thus the inverse of x is x-1. In matrix algebra the inverse of a
matrix is a matrix when multiplied by the original matrix is I. Thatis AA* = A*A=I. Only square
matrices will have an inverse, although not all square matrices will have an inverse. Bernardo
describes how to calculate the inverse of a simple 2x2 matrix and it is possible to calculate inverse
matrices consisting of 3x3 elements, but calculations of inverses of larger matrices are better left to
software.

A
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Best Linear Unbiased Prediction

Henderson’s shrinkage predictor can now be considered in the context of the matrix form of the mixed

model equation:
y=Xb+Zu+e&

Equation 7

y = Vector of observations (phenotypes)

X = Design matrix for fixed effects

b = Vector of unknown fixed effects (to be estimated)

Z = Design matrix of random effects

u = a vector of random effects (genotypic values to be estimated)
€ = a vector of residual errors (random effects to be estimated)

The random effects are assumed to be distributed as u ~ MVN (0,A) and € ~ MVN (0O,R)

Just as estimates for B in the matrix form of Equation 1 can be found using the normal equations
Equation 4, the normal equations for Equation 2 can be used to find

bp| |X’R'X X'R'Z | X'R'y
ol |ZR'X ZR'X+A YV, /V)| |Z'R'y

Equation &
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BLUEs and BLUPs

The values for b represent the Best Linear Unbiased Estimators (BLUE) of the fixed effects, while the

values for u represent the Best Linear Unbiased Predictors (BLUP) of the random effects. It is important

to remember that BLUE's and BLUP's are not methods, they are statistical properties of methods (there
are many) that are capable of producing such values. These statistical properties include

® Best: the sampling variance of what is being estimated or predicted is minimized.

® Linear: estimates or predictions are linear functions of the observations.

® Unbiased: in BLUE indicates that the expected values of the estimates are equal to their true
values. In BLUP, indicates that the sum of the predictions have an expectation of zero.

m Estimators and Predictors: refer to algorithms that generate the estimated or predicted values.

For BLUE's the effects are considered fixed. Examples include the overall mean, effects of different soil
types, fertilizer treatments, etc. From a practical perspective, fixed effects do not have a covariance
structure. Due to the practical perspective, we often consider environments as fixed effects.
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Effects of BLUPs

The effects of BLUPs are considered random and it is possible to define covariance structures associated
with these effects. Examples include breeding values, dominance effects, tester effects, etc. The
challenge for application of methods that provide BLUPs is that Equation 8 assumes covariances and
variances are known. The truth is that the variances of genetic and non-genetic random effects are not
known. Rather in practice we estimate these values. Thus, all implementations of methods that provide
BLUPs from mixed linear model equations provide only approximations of the unknown vector values.

Nonetheless, BLUP values are useful in practical plant breeding trials where designs are unbalanced.
Indeed, a method that produces a BLUP value enables the estimation of genetic variances without
having to resort to mating designs to obtain estimates of heritability. A typical trial will have different
numbers of genotypic units from different families evaluated in different sets of environments, some
replicated some not. BLUPs utilize covariance structures (covariances among genotypic units grown in
the same sets of environments and covariances among relatives) to maximize information on the traits
of interest. Thus, the true purpose of a plant breeding trial (to compare genotypes for purposes of
selection), is enabled with the best possible values for comparison because BLUPs maximize the
correlation between the true genotypic values and predicted values.
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Example

While Equation 8 initially appears to be daunting, with the little bit of matrix algebra, introduced above,
you have the skill to do these analyses using EXCEL. For example, consider the simple data set in the
following table (adapted from Chapter 11 of Bernardo, 2010):

Environments nEnv Line Yield We desire to translate this into the following model.

i: ::::: E ; :2? Y;j;i- ==/ +G; + E; 2B GE;; + EGijik
;?:hi::ljd ;8 Z 23; 1= L - Ul j — 1, e k = L N
e 5 ARG

In matrix notation the data are F,_fl 45
represented in the model as: |
4.61

1

1
5.27( |1
H.00( |0
0

0

U )

e

U €4

5.82
5.79

T4 E5

}—i}—k}—i(:)(:)(:)

0
1
0
1
0
0
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Linear Mixed Model Solution

The LMM solution is represented as:

X'R'X X'R'Z } E [X’R‘l y}

Eat

o

7| |ZR'X ZR'Z+A'(V./V)| |ZR'y
where : :
b, i (4.45] 1000 L7 QST EH-F)
b, il T 4.61 0100 B P d 0D
glzﬁ,] _|to] _|527|_,_[0000f_ |0 O A 00O
L;, b X100 11750004 o1 00/®=|o 0 0 w0 0
iis i 5.82 0010 W 04000 O
4 fus(E 5.79 0001 \Q P 010 14

Thus, R represent a matrix that weights the calculations by the number of observations that contribute
to the estimated mean values of each cultivar in each type of environment.
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Estimated Residual Variance

o

b O
o O
—

Assuming that the lines are unrelated to each other, A = and V_/V, is the ratio of

) e
-
o

000 2

the estimated residual variance (sometimes incorrectly referred to as the estimate of the experimental
error) to the estimated additive genetic variance. For purposes of illustration let’s consider this
estimated ratio to be 5, i.e., the estimated additive genetic variance is 20% as large as the residual
variability.

Calculations for the example have been implemented in an EXCEL spreadsheet "BLUEs and BLUPs of 4
barley varieties.xlsx".

As an exercise to conduct on your own, consider implementing the LMM.7 for the example on
estimation of means using Ismeans discussed in the review module "Review of EDA and Estimation”.



Quantitative Genetics

ironment Trials: Linear Mixed Models

This module was developed as part of the Bill & Melinda Gates Foundation Contract No. 24576 for Plant Breeding E-Learning in Africa.

Funding provided by:

BILLe MELINDA
(GATES foundation

Other collaborating organizations:

)
§AcRA -

CGIAR

Partnering universities:

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Quantitative Genetics Module 3 Author:
William D. Beavis (ISU)

Multimedia Developers:
Gretchen Anderson, Todd Hartnell, and Andy Rohrback (ISU)

Quantitative Genetics Course Team:
William D. Beavis (ISU); Richard Akromah, Joseph Sarkodie-Addo, Maxwell Asante (KNUST); Richard Edema,
Paul Gibson, Settumba Mukasa, Patrick Ongom (MAK); John Derera, Pangirayi Tongoona, Hussein Shimelis (UKZN)




