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Objectives

• Explain the role of selection for multiple traits on genetic gain

• Learn methods for selecting multiple traits

• Learn how to evaluate the e�ciency and effectiveness of selection on multiple traits



Multiple Trait Selection Strategies

Multistage selection: Selection for different traits at different stages during cultivar development.

Tandem selection: Selection for one trait until that trait is improved, then for a second; etc. until �nally each has

been improved to the desired level.

Independent culling levels: A certain level of merit is established for each trait and all individuals below that

level are discarded regardless of values for other traits.

Index selection: Select for all traits simultaneously by using some index of net merit.



Index Selection

Index Selection - Definition and Objective

An index is the best linear prediction of an individual’s or line’s breeding value and takes the form of the

multiple regression of breeding value on all sources of information.

The objective of an index is to �nd the linear combination of phenotypic values that maximizes the expected

gain, or equivalently that maximizes the correlation between the index value and true worth (breeding value).



Index Selection Theory

De�ne 

where

 is the observed value of attribute  for an individual or line

 is the average of phenotypic values over a population of environments

 is the non-genotypic contributions from environments. 

Note: Genotype x environment interactions are permitted, assuming genotypes and environments are

associated entirely at random; such interactions are incorporated into . If GxE are not random, then see

Cooper and DeLacy (1994) 

Assume  is composed entirely of additive effects of genes (breeding values). De�ne the genotypic economic

value of an individual as:

where, the  are known relative economic values. Assume the quantities  and  are such that the

regression of  on  is linear. Selection will then be based on the linear function.



Assumptions

Assume an equal amount of information on all individuals to be evaluated and selected. Assume that the

distributions of  ,  , and   are unknown, but that the mean and covariances are known.

Then, 



Mean and Covariance of H and I

With these assumptions we can derive the mean and covariance of H and I. 

The objective of a selection index is to use some linear combination of trait values (I) to predict true genetic

worth (H).

This can be accomplished by:

• maximizing expected genetic gain.

• maximizing the correlation of the sample index (I) with true worth (H).

• maximizing the probability of correct selection.

• minimizing the E(I-H)2.

Williams (1962) showed that maximizing the correlation between I and H also maximizes the expected genetic

gain and the probability of correct selection.



Derivation of the Optimum Index

Derivation of the Optimum Index

Maximizing correlation of I with H:  

It can be shown that maximixing rIH is equivalent to maximizing log(rIH). 

Using least squares and differentiating with respect to bj we get: 



Rewriting the Normal Equations

These equations are called the normal equations (unrelated to normal distribution) and constitute n equations

in n unknowns.  

They can be rewritten as follows:  

Because we are only interested in relative values of bi the constant term can be dropped resulting in the

following equations:



Further Calculations

Consider these equations for 2 traits (n=2): 

Solving we get:



Minimizing E(I-H)^2

The same equations can be derived by minimizing E(I-H)2, 

because, 

Applying least squares:  

Dividing through by 2 and rearranging we get the normal equations:

which are identical to the equations presented previously.



Expected Genetic Gains

Expected Genetic Gains

To derive the expected genetic gains we need to make assumptions about the distributions of  ,  and  . 

Assume:

1. ,  and   are distributed normally with the mean and covariance structure given earlier.

2. Truncation selection on  .

Then,

where   is the regression coe�cient of   on , which gives the mean value of   or any value of . This is

the standard way to calculate predicted gains from univariate selection. See, for example, Empig et al. (1972).



Truncation Selection

The situation with regard to truncation selection is based on the following: 

where,

Ī is mean value of index in the population;

c is truncation point;

z is height of ordinate of the standard normal curve at the truncation point c;

P is the proportion of the population selected; and

Īs is the mean of the selected individuals. 

Then,

de�nes the frequency f(I) of individuals with index value I.



Selection Relationships

The proportion saved is related to the truncation point by  

and, the mean value of the selected group is:

The selection differential (D) is given by: 



Standardized Regression Coefficient

Let, 

Then, 

where, z is the height of the ordinate at the truncation point. 

Typically this is represented as

where, k is the standardized regression coe�cient.



Expected Gain

Expected gain can then be represented as: 

From the normal equations derived earlier we have:

Substituting we get,



Predicted Gain

However, the predicted gain is more useful when written in terms of the correlation between H and I designated

as rHI. 

In the selection index literature, rHI is called the accuracy of selection, because it is a measure of how well the

index (I) measures the true worth (H).

Alternative selection indices (I) can be compared using rHI as long as the selection goal (H) remains the same

for each of the indices.



Expected Genetic Gains for Each Trait

Let ΔGi be the expected genetic gain in trait i when selection is on I. 

This index requires that you know the true values of the population parameters. However, estimates of the

population parameters are often substituted for the true values and the resulting index is called the estimated

index or the Smith-Hazel index.



Matrix Representation

Matrix Representation of Selection Indices

With this notation the normal equations can be written as:



Some Results



Construction of a Selection index

Optimum Index

where P, G and a are known without error. 



Smith-Hazel Index

Same as the optimum index, only we use estimates of  ,  , and , designated as  ,  and , respectively. 



Base Index

The Base Index was apparently �rst suggested by Brim et al. (1959) and named the base index by Williams

(1962). The base index is constructed simply by allowing b = a. Therefore,

Some results for this index include: 

The foremost attribute of this index is its simplicity of construction and of interpretation. Also, this index does

not require estimation of genetic parameters.



Multiplicative Index

The multiplicative index was �rst proposed by Elston (1963). This index is also sometimes called the weight-

free index, because it does not require the speci�cation of index weights or economic values.

The general form of this index is: 

where,   is the minimum value of trait   set by the breeder.

In addition to being weight-free, this index also does not require estimation of genetic or phenotypic

parameters. Because this is a curvilinear index, theory is not available to predict gains. Baker (1974) found that

this index can be approximated by using a linear index, where the weights are the reciprocals of the phenotypic

standard deviations of the traits in the index. This essentially amounts to an index with equal weighting per

phenotypic standard deviation. Approximate predicted gains can then be obtained for this index using the

Smith-Hazel index theory.



Desired Gain Index

The desired gain index was suggested by Pesek and Baker (1969). This index allows the breeder to specify a

vector of desired gains, q and then substitute this into the predicted gain equation and solve for   the index

weights. The solution for   is: 

where   is the vector of desired gains and  , as before.

This index was proposed to eliminate the need to specify economic weights. However, in practice there are

some di�culties with the index in specifying the vector of desired gains.

This index will result in maximum gains in each trait according to the relative importance assigned by the

breeder in specifying the desired gains.

Predicted gains can be obtained by substituting the vector of index weights into the conventional Smith-Hazel

predicted gain equations.



Restricted Selection Index

Restricted selection indices were �rst derived by Kempthorne and Nordskog (1959). Since then, various

restricted indices have been derived by Cunningham et al. (1970), and James (1968). See Lin (1978) for a

complete list. Basically, restricted selection indices involve holding the genetic gains in one or more traits to a

constant or zero, while changing the means of other traits in the desired direction. The basic method is to

impose the restriction on the index equations that  . 

The simplest procedure to accomplish this was given perhaps by Cunningham et al. (1970). Their method

involved solving the following set of equations.

and the dummy variable bd is given by: 

 is the vector of index weights to use in the index equation as  , as before. The dummy variable is not

use in the index equation. 

This method has the interesting consequences that the value obtained for the dummy variable is the negative of

the economic weight needed to produce zero change in that trait in an unrestricted selection index.



Rank Summation Index

The rank summation index was �rst suggested by Mulamba and Mock (1978). Basically this index involves

obtaining the ranks of each of the traits to be included in the index and then calculating the index by summing

up the trait ranks. 

The primary advantages of this index are that genetic parameters need not be calculated, it transforms the data

so that the variances for each trait are identical, and it does not require the speci�cation of economic weights,

although they can be used.

As with the multiplicative index, predicted gains cannot be calculated for this index. However, Crosbie et al.

(1980) found that the same prediction equation used for the multiplicative index provides a reasonably good

approximation of the predicted gains for the rank summation index.



Selection Index Efficiency

Methods to Compare Selection Index Efficiency

Cunningham (1969) provided a method for comparing the relative e�ciencies of selection indices. He was

primarily interested in deleting traits from the index that their relative contribution to the gain in the true worth

(H) could be determined. Dropping traits from the index means that fewer genetic parameters need to be

estimated providing a considerable savings in cost. 

De�ne the index containing all the traits of interest as the original index and de�ne the index with one trait

dropped out as the ith reduced index. Then the e�ciency of the ith reduced index relative to that of the original

index is the ratio of their standard deviations. Cunningham showed this to be:

where, bi is the ith weighting factor in the original index, and Wii is the corresponding diagonal element in the

inverse of P. A more usual procedure is to compare the gain for the ithtrait when selection is on I, relative to

single trait selection for the ith trait.



Effect of Correlations on Index Weights

To determine the effects of correlation on index weights we need to derive the index equations Pb = Ga in terms

of genetic and phenotypic correlation coe�cients. 

The derivation follows. Let,



Derivation

For 2 traits (n=2), 

When correlations are zero: Pr12 = Gr12 = 0,  

Smith et al. (1981) have shown that when | r | < 0.30, the use of the above index is nearly as e�cient as using

the Smith-Hazel index.
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