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Objectives

• Explain the role of selection on genetic improvement

• Explain all of the components of realized and predicted genetic gain

• Explain why realized genetic gains are always less than predicted genetic gains

• Explain the role of replication in multi-environment tests on predicted and realized genetic gains



Introduction

Consider the underlying theory of selection.

Let  be the mean phenotypic value of a quantitative trait that is normally distributed in a large random

mating population. Also, designate  as the mean of a selected proportion P of this population, where c is the

truncation point of selection and Z is the height of the ordinate at the selection truncation point.

The selection differential is de�ned as:

If σ2p is the phenotypic variance in the population then the standardized selection differential can be written as:

Fig. 1 The normal distribution.



Selection Response

Selection Response - Definition

While  may be distinctive relative to , of greater interest are the phenotypes of the progeny derived from

crosses among the selected parents . The predicted response of progeny to selection of their parents can be

derived from the relationship between parent and offspring as follows. Designate R as the response to selection

measured in the offspring (represented as a deviation from the population mean). S is the selection differential

(represented as a deviation from the population mean) as described on the previous page.

Fig. 2



Genetic Gain

Then the response to selection ( R ) can be written simply as:

where  is the regression coe�cient of offspring on the mid-parent value, which can be written as:

because 

Also, we can show:   

so  therefore

which is the selection response or Genetic Gain, as Lush de�ned it in 1940. This equation for ΔG, based on

regression of offspring values on mid-parent values, is di�cult to apply directly to plant breeding systems

because plant breeders typically evaluate hundreds of replicated individuals representing thousands of

genotypes grown in replicated plots in dozens to hundreds of environments. Unlike most animal systems, it is

possible to replicate progeny genotypes due to the diversity of reproductive biology that is available to plant

breeders: clonal propagation, doubled haploids and tolerance to inbreeding through self-pollinations for

multiple generations. In the last example, the response units can be several generations removed from the

parental (crossing) generation. The type of reproductive biology will affect the details of how we estimate the

response to selection, ΔGc.

Equation 1

Equation 2



Heritability on an Entry-Mean Basis

Recall plant breeders often report heritability from �eld experiments on an entry-mean basis as

Although Equation 3 is similar to Lush’s broad sense heritability, it is not exactly the same concept because it

can be ‘adjusted’ by adding replicates and environments to reduce the impact of σ2ge and σ2e on the estimated

phenotypic variance.

The problem for plant breeders was that the concept of evaluating individual plants and the performance of

their progeny to obtain an estimate of heritability simply is of no practical use for most crops where plot

performance is the basis for selection. Hanson attempted to address this by framing the multiple concepts of

heritability within the context of genetic gain (1963).

Hanson de�ned heritability as “the fraction of the selection differential expected to be gained when selection is

practiced on a de�ned reference unit.” Given the standard de�nition for selection response,

we can then solve for h2 and obtain the following expression:

i.e., the standardized response to selection, or realized heritability.

Equation 3

Equation 4



Context of Heritability

Within the framework of genetic gain, Hanson de�ned heritability in such a manner as to be consistent with the

original concept, while at the same time taking into consideration that it has little meaning unless the selection

units (entry means) and response units are de�ned. Thus, when plant breeders wish to communicate

information about heritability they should specify:

1. A reference population of genotypes.

2. A reference population of environments. i.e., the target environments.

3. Selection units

4. Response units

This context emphasizes the purpose for obtaining variance component estimates, usually for the purpose of

comparing genetic gains (ΔG) under various possible breeding procedures. The results are used to make

decisions about which procedure to employ. Indeed, it is in this context that variance components of heritability

are used as “plug in values” (Sprague and Eberhart, 1977) for a six step decision making algorithm that uses ΔG

as an arbiter for comparing breeding methods (Fehr, 1994; Chapter 17). Actually, this back of the envelope

algorithm is fairly insensitive to the estimated heritability values and there are more effective means of

optimizing genetic gain, number of generations and costs.



Holland's Synthesis

A thorough review of heritability and how it should be interpreted to compare ΔG by plant breeders was given by

Holland et al, (2003). The review was essentially an update to a review by Nyquist (1991) where the updates

were based on computational techniques, REML in particular, for obtaining appropriate estimates of variance

components. He indicated that plant breeders have traditionally used the method of moments (covered in later

slides) to estimate genotypic and phenotypic correlations between traits on the basis of a multivariate analysis

of variance (MANOVA), and pointed out the key drawbacks of using the method that include the possibility of

obtaining estimates outside of parameter bounds, reduced estimation e�ciency, and ignorance of the

estimators’ distributional properties when data are missing.

With Hanson’s response, the response to selection can be rewritten as:

where ßSR is the regression coe�cient of the response units on the selection units and is equal to:



Family Structure

Assume our selection and response units are represented by some family structure, say half sibs, or full sibs, or

recombinant inbred lines, as examples. Also, recall that we can equate the genotypic variance component,

designated as f for family relationships, to the genetic covariance of relatives. Thus, the Cov(R,S) = Var(f). Also,

note that the Var(S) is the phenotypic variance among the entry means. Thus, ßSR is the proportion of variance

among family units relative to the phenotypic variance among entry means. We might refer to this as heritability

of the family units:

If the replicated plots consist of half sibs from a random mating population, then the variance component

among half sibs on an entry mean basis is equal to the covariance of the half sibs, i.e.,

 , ignoring epistasis.

Equation 5



Narrow-Sense Heritability of Half-Sibs

Thus, it is possible to utilize the estimated variance components from an ANOVA to estimate a “narrow sense

heritability” by simply multiplying this variance component by 4/(1+F) and plugging the value into Equation 5.

Notice that this is not the same as the original narrow sense heritability as de�ned by Lush (1940), but is a

narrow sense heritability for a population of half sibs.

Next consider the numerator in the equation above. For the case of half sibs we’ve learned that

Equation 6



Covariance Estimation

Again, if the data are not balanced, the variance component will not be estimated correctly unless REML is

used. Let’s assume that we obtain a ‘best’ estimate for σHS; either because our data are balanced or we have

used REML. Should we use the previous equation for the Cov(R,S)? To answer this we have to recognize that

there is a genetic relationship between selection units and response units, i.e., there is a pedigree relationship

or coe�cient of coancestry between the selection and response units and Equation 6 does not take this into

consideration. In the case where both selection units and response units are half sibs the Cov(R,S)

Note that if Equation 7 is used, a slightly biased estimate of heritability will result even if best estimates of

variance components are obtained. For other types of progeny the bias in the numerator can be much larger.

Equation 7



Example A

Estimation: Narrow sense heritability estimated from a half-sib family experiment with data obtained on

individual plants in multiple independent environments.

A. Heritability on an individual plant basis

• selection among individual plants

• 1 Replication in 1 environment

• response measured in outbred progeny



Example B

Estimation: Narrow sense heritability estimated from a half-sib family experiment with data obtained on

individual plants in multiple independent environments.

B. Family Heritability on a plot basis (half-sib family, single plot mean values)

• selection among plot means

• 1 Replication in 1 environment

• outbred progeny



Computational Considerations

Example C

Estimation: Narrow sense heritability estimated from a half-sib family experiment with data obtained on

individual plants in multiple independent environments.

C. Family Heritability

• selection among half-sib family meansaveraged over environments

• outbred progeny

The only way to remove the bias is to include both selection units and response units in the analyses. This is

not the same thing as including both groups in the same sets of environments.



Method of Moments

Let’s next explore computational nuances of these concepts in the context of plant breeding populations.

Consider �rst the evaluation of half sibs from a random mating population in a replicated Multi-Environment

Trial. Let the phenotypic variance of the selection units be designated σp2. From an introductory course in

statistics, we were taught that the phenotypic variance on an entry means basis can be obtained directly from

Ordinary Least Squares (OLS) ANOVA by equating the estimated Mean Squares (MS) with Expected Mean

Squares (EMS). This is also known as the Method of Moments (MoM). Thus an estimate of σp2 =



When to Use Method of Moments

It turns out that application of MoM is appropriate only if the data are from a balanced experiment, i.e., the

number of genotypes, in this case families or genotypic entries, is the same across reps and environments.

Recall that lsmeans are useful for estimates of entry means in the case of unequal replication per environment.

Next we need to learn how to obtain estimates of the variance components for unbalanced data sets.

The most obvious problem is that the coe�cients of the variance components are not equal to the products of

the numbers of reps and environments in the EMS. Addressing this problem is fairly straight-forward (Milliken

and Johnson, 1992). A more di�cult problem is that the estimates of the variance components themselves are

no longer the “best” estimates. The solution, as described by Holland et al (2003) is to obtain Restricted

Expected Maximum Likelihood (REML) estimates in a Mixed Model Procedure (MMP).



REML

For example let’s consider the case of half sib progeny. Recall that

If the data are not balanced the variance component will not be estimated correctly unless REML is used. Let’s

assume that we obtain a ‘best’ estimate for σHS; either because our data are balanced or we have used REML.

Should we use Equation 8 for the Cov(R,S)? To answer this we have to recognize that there is a genetic

relationship between selection units and response units, i.e., there is a pedigree relationship or coe�cient of

coancestry between the selection and response units and Equation 8 does not take this into consideration. In

the case where both selection units and response units are half sibs the

Thus, if Equation 8 is used, a slightly biased estimate of heritability will result even if REML based estimates of

variance components are obtained. For other types of progeny the bias in the numerator can be much larger.

Thus, the predicted genetic gain that might be used for planning purposes or comparison of possible breeding

methods will be overestimated.

Equation 8
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