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Objectives

B Recognize limitations of experimental research

B Translate QG models to simulation models

B Translate simulation models to EXCEL software functions
B Build confidence in use of simulation models
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Introduction

Quantitative genetic models are used to represent, describe and quantify the genetic contributions to
natural phenomena. These models can be arbitrarily simple, e.g., additive linear models, or complex,
e.g., hon-additive, non-linear models. R.A. Fisher and Sewell Wright had a decades long debate about
which type of model should be considered in the study of natural and artificial selection. Fisher and his
disciples argued that the more complex models were not needed. Sewell Wright and his students
argued that biology was inherently complex and needed non-linear non-additive models to accurately
understand adaptation and evolution. Of course, both were correct and both were wrong. As George
Box reminds us, all models are wrong, some are useful. The choice of an appropriate model depends
upon the purpose of the research.

Prior to this module, we investigated development of theoretical quantitative genetic models for the
purposes of conducting and interpreting analyses of plant breeding experiments. As noted, without the
theoretical models, there would be no genetic understanding of the results. Theory provides predictions
and predictions are the basis for generating testable hypotheses. In this module we introduce a far
more practical justification for theoretical models: With a theoretical model it is possible to simulate
many different data analysis techniques and breeding strategies prior to conducting expensive
experiments. In other words, natural and artificial systems can be modeled in silico for purposes of
predicting unknown outcomes. Many In silico experiments can be compared and the most promising
can be used to compare methods or processes. If comparisons are based on objective criteria, such as
accuracy, power, precision, efficacy and efficiency, and if the model used for data analyses is the same
as the model used for simulating data sets we can make rational decisions about which methods to
implement in plant breeding experiments.
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History of Simulations

Geneticists first used computers to implement simulation models to evaluate limits to artificial selection
(Hill and Robertson, 1968; Bulmer, 1968) in closed breeding populations. By 1988, Oscar Kempthorne,
one of R.A. Fisher’s disciples pointed out that the classical experimental and algebraic approaches were
limited to unrealistic assumptions in breeding and evolutionary systems. Since 1988, plant and animal
geneticists and breeders have used simulation models to evaluate the limits to emerging statistical
methods (Beavis, 1994) and to choose among selection methods because experimental evaluation of
breeding methods is time and resource limited (Podlich and Cooper, 1998). To date, there have been
over 15,000 publications in which the terms simulation and breeding occur in the title. Currently there
are numerous simulation software packages that have been developed and implemented for public and
private research enterprises. Some are quite simple, while others are very flexible and complex.
Generally, as the flexibility of the package increases, the learning curve associated with the complexity
of the package also increases. Thus, some of these simulation packages require entire courses and
years to master. While it is beyond the scope of this module to either advocate or teach any particular
simulation package, we will learn how to implement the core quantitative and population genetic
models that are part of every useful simulation package.
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Core Elements

The core elements of simulation modeling include the genetic architecture of the trait(s), the structure
of segregating generations derived from breeding populations and organization of the segregating
genomes.

STRUCTURE OF THE BREEDING POPULATION AND SEGREGATING GENERATIONS

Before we decide on the genetic architecture of the trait, we need to know the structure of the
segregating generation derived from the breeding population. In diploid organisms there are usually
three genotypes at a SNP locus: {aa, ac, cc} or {tt, tg, gg}. Let’s consider a locus with the second
triplet, {tt, tg, gg}. If we decide to simulate a random mated population, then each of the three
genotypes {tt, tg, gg} will occur at a frequency of p?, 2pq and g2. To decide which genotype is going to
be assigned to an individual we should obtain a random sample of a number from the Uniform[0,1]
distribution. If the random number is in the interval [0,p?], then we will assign the genotype 'gg’ to
individual i. If the random number is in the interval [p?, p2+2pq], then we will assign the genotype 'tg’
to individual i, otherwise we will assign the genotype 'tt’ to individual i.

Obtaining a random sample from any distribution will depend on the syntax of the software system we
decide to use for simulating the data. Since most students have experience with spreadsheet types of
software, we will first learn how to use Excel for simulating SNP genotypes at a single locus in a
random mating population, where p (frequency of g) = .3. The frequency of ‘gg’ genotypes at this
locus will be 0.09, the frequency of 'tt’ genotypes will be 0.49 and the frequency of heterozygous
genotypes will be 0.42. Thus, if we sample a random number from the Uniform distribution in the
interval [0, 0.09], then we will assign the genotype ‘gg’ to individual i; in the interval from (0.09, 0.51]
we will assign the genotype 'gt’ to individual i; otherwise we will assign the genotype 'tt’ to individual i.
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Excel-Based Simulation
With these parameters, we will use the Excel functions “"IF” and "RAND" in the following steps:

1. Assign a sampleid designator to the first column.

A E C D E F G
sampleid
P1
P2
P3
P4

e 1
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Excel-Based Simulation
With these parameters, we will use the Excel functions “"IF” and "RAND" in the following steps:

2. Obtain a random number from the Uniform Distribution for
each of the sampleid’s. Syntax: type =RAND() in cell B1, then
drag across all cells in column B.

A B C D E F G

Random

1 sampleid sample

2 |P1 0.757069

3 P2 0.610641

4 |P3 0.87611

5 P4 0.168848

& P53 0.980236

7 |P6 0.124398 | .l

8
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Excel-Based Simulation
With these parameters, we will use the Excel functions “"IF” and "RAND" in the following steps:

3. Based on the random number assigned to each sampleid,
assign a genotype to the locus. Syntax: type
=IF(B3<=0.09,"gg” ,IF(B3>0.51,"tt”,"gt")) in cell C1, then
drag across all relevant cells.

A E C D E F G
Random locusl

1 sampleid sample genctype

2 |P1 0.757069 gt

3 |P2 0.610641 tt

4 |P3 0.87611 tt

5 P4 0.168848 gg

& |P5 0.980236 tt

7 |P6 0.124398 tt

8



Excel-Based Simulation

If we do not want the values generated by the RAND function to change as we add functions to the
spreadsheet, we should plan to cut and paste a set of the actual values from one of the sampling

events into new columns:

A
sampleid

P1

p2

P3

P4

P5

PG

B
Random
sample
0.72136
0.506127
0.32326079
0.090098
0.461148
0.856971

C
locusl

genotype

S R R R R

D

fizxed values

0.147935
0.657802
0.940249
0.022139
0.764216
0.735858

E
fixed
genotype

e ]
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Other Population Structures

There are many other possible breeding population structures; some are the result of designed crosses
(see the module on mating designs), but most population structures emerge from long term breeding
programs in which elite homozygous cultivars are crossed to promising homozygous lines through
opportunistic networks of crosses. Simulating genotypes at segregating loci from any mating design or
breeding program be obtained in a manner described in the previous paragraph. We need only decide
on the frequencies of the genotypes in the segregating populations. For example, the specific case of
an F2 generation derived from a cross of two inbred lines, p=q=0.5 and if a random number obtained
from U[0,1] is greater than 4 and less then 34 then the genotype of individual plant i, will be ‘gt’. We
could be interested in the case of recombinant inbred lines derived in the F5 generation of a cross of
two inbred lines. In this case, the frequency of homozygotes are now p?+pqgF and g?+pgF and the
frequency of heterozygous lines is 2pq(1-F), where F = .875. Thus if a random number obtained from
U[0,1] is less than .4687, then RIL i will be assigned the genotype 'gg’. It should be obvious that it
should be possible to generate mixtures of segregating families from multiple independent of related
crosses and simulate genotypes for any particular locus to all individuals in all families, regardless of
how the families are derived.
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Genetic Architecture of the Trait

Next we need to decide how many loci will influence a trait and whether the alleles at the loci will
interact. Let's begin with a single-locus additive quantitative trait, designated P. Further, consider a
trait with an average phenotypic expression of 50 units and phenotypic variability in a diploid species
that is due to additie genetic variability at a single locus and non-genetic variability. Initially let's plan
to let half of the phenotypic variability be due to segregation at the locus and half due to non-genetic
sources of variability. The first step is to translate this brief description into a quantitative genetic
model, preferably the same model that will be used in eventual analysis of the phenotypic trait:

P,=p+G t+ey;

where i refers to one of three possible genotypes conferred by two alleles, j refers to one of the
repeated samples of the i*" genotype, e, is a non-genetic source of variability and is ~ i.id N(0,a,).
Thus,

0r=0%+ 02
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\
Parameter Assighment
The next step is to assign values to each of the parameters in the model. p is assigned the value of 50
and values from e are sampled from a Normal distribution with a mean of zero and a standard
deviation of s_. We decided that we want to simulate data in which

2
9¢ — 05,
Or

We can choose any value for o2, but it is often best to choose a value that is ~ consistent with
estimates from field trials for the crop of interest. In this case, let's say our field trials have typically
produced estimates of phenotypic variance of ~ 98. Thus, both ¢% and o2 are ~ 49. Thus, we can
obtain values for €. by sampling a Normal distribution with mean = 0 and standard deviation = 7.



? Quantitative Genetics

Genotypic Values

We also need numeric values for each of the genotypes. Recall from Quantitative Genetic Models
Theory, we can assign coded genotypic values to each genotype:

Coded genotypic value of one homozygote (gg) = +a
Coded genotypic value of the other homozygote (tt) = -a
Coded genotypic value of heterozygotes (tg or gt) = d

Since we are simulating an additive genetic model, the genotypic value of the heterozygotes (d) is
midway between the two values for the homozygotes, i.e., d=0. Thus,

G = afori="gg";
-a for i = “tt";

and 0 for i = "gt” or “tg".

Now we need a nhumeric value for a.



Calculations
Also, recall that

e = e

where

o4 =2pqgla+d(qg—p)|’
0h = (2pqd)*.

and

Since we have decided to simulate d=0,

Ot =05= 21{)(]{12,

a= /49
2pq

If we assume that the frequency of 't’ (or 'g’) in the population is 1/4, then a reasonable value for

5= 24—9 ~ 11.43
Dq

thus




Excel Application

Next, let's translate these values for the parameters into Excel functions.

Syntax for assigning ‘a’": Type =IF(E3="gg”,11.43,
IF(E3="tt",-11.43,0)) in Cell G1, then drag across all

relevant cells.

A
sampleid

P1
P2
P3
P4
P5
P6

ER v« T B ) TR Oy IR S W B % I

In order to fully understand how to sample from a Normal distribution requires knowledge of probability
density functions, cumulative density functions and integral calculus that enables the translation
between the two. These are topics beyond our current scope, but worth exploring by those who wish

B
Random
sample
0.149166
0.212785
0.769295
0.255968
0.123113
0.060002

C
random

genctype

fo g og o9 ooy

to develop their own simulation capabilities.

D

fixed values

0.147935
0.857802
0.940349
0.0221393
0.764216
0.735858

E
fixed

genotype

SAE R AR

50
50
50
50
50
50
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-11.43
-11.43

11.43

-11.43
-11.43



Normal Distribution Interval

For our immediate purpose the Syntax for obtaining values for e, by sampling a Normal distribution
with mean = 0 and standard deviation = 7 is the following:

Type =NORMINV(RAND(),0,7)) in cell H3 and then drag across
all relevant cells.

A B C D E F G H I J
sampleid e o fixed values SN L G; E;
1 sample genotype genotype .
2 Pl 0.694765 it 0.147935 gt 50 0 -10.6475
3 P2 0.274265 gt 0.657802 it 50 -11.43 -3.17286
4 P3 0.736703 it 0.940349 it 50 -11.43 0.861763
5 Pa 0.317299 gt 0.022139 Eg 50 11.43 4,939074
5 P5 0.772776 it 0.764216 it 50 -11.43 -12.0852
7 PG 0.019678 Eg 0.735858 it 50 -11.43 -0.02329
8
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Simulated Phenotypes

We now have values for all of the parameters in the model and need merely sum columns F, G and H to

obtain the simulated phenotypes (column I) for each of the sampleids.

A
sampleid

P1
P2
P3
P4
P5
PG

oo o=l @hvown ks Wy

E
Random
sample
0.694765
0.274265
0.736703
0.317299
0.772776
0.019678

C
random

genotype

B amaE

D

fixed values

0.147935
0.857802
0.940349
0.022139
0.764216
0.735858

E
fixed

genotype
gt

tt
it
EE
it
tt

50
50
50
50
50
50

H

£ i
-10.6475
-3.17236
0.861763
4,939074

-12.0852
-0.02329

I ]

P

39.35253
35.39714
39.43176
66.36907
26.48485
38.54671

Keep in mind that if these were field trial data, we would only be able to obtain data found in columns A
and I. It should be immediately apparent that column F could be a mean for a particular replication or
environment of the sampleids. Thus, it should be possible to simulate data from multiple replicates and
multiple environments with different mean values. It should also be apparent that the sampling of e,
could be derived from environments with different plot to plot variability. For example instead of using
7 in the function =NORMINV(RAND(),0,7)), we could designate the standard deviation for some
environments to be 14 and thus create a type of GxE that we discussed in Multi Environment Trial

modules.
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Example Calculations
For the specific case of an F, generation derived from a cross of two inbred lines, p=q=0.5,

_= 49 _
a—\/2(25) 9.9

Alternatively, we could be interested in the case of recombinant inbred lines derived in the F5
generation of a cross of two inbred lines. In this case,

04=2pq(1+F)la+d(g—p)|’

Again, d=0, p=q=.5, but F = .875 and a reasonable value to simulate for

49 .
2(1+F)pq R

a:
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Polygenic Trait Simulation

Let’s next simulate a polygenic trait P in which segregation at three loci will contribute additive
genotypic values that are responsible for 30% of the phenotypic variability. In this case the phenotype
is modeled:

P;; — 14 - ZG;I.“;;-:I T & ij (k)
k=1

where i, j, G and € are as before and k represents each locus, and n is 3. For simplicity, lets assume
that segregation at each of the three loci contributes an equal amount to the genotypic variability in an
F2 population. Let's refer to these loci as quantitative trait loci (QTL). Using the quantitative genetic
models we have already used we learn that

/nQTL,

for each of the simulated QTL. If we want the total phenotypic variability to be ~98, as before, and the
frequency of each of the alleles at all three loci is .5 (as in an F2) then o2 = 0% = 29 and a = 2.56 for
each of the loci. We would translate this information to the Excel spreadsheet as before, but now the
spreadsheet will have three columns for genotypes and three columns for Genotypic values at each of
the loci.
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QTL Simulations
How would you simulate genotypic effects if you wanted one of the QTL to contribute 75%, a second
QTL to contribute 20% and the third to contribute 5% to the total genotypic variability?

=3

For hybrid crops, the segregating progeny are often evaluated in testcross combination. For example,
in maize, it is routine to generate doubled haploids (DHs) from a cross of two elite Stiff Stalk
homozygous lines. The DH’s are then crossed to an elite non-Stiff-Stalk homozygous ‘tester’. The
resulting sample of Testcrossed DH (TDH) will be evaluated in an initial field trial. Let’s simulate this
situation for TDH's, grown in a field trial in which the CV for yield is ~ 7% and the mean is ~ 225
bu/ac. In order to simulate TDH's we need to recall that

ol = %(1 +F) 6 (a)

Because the parents of the DH lines are fully homozygous, we can assume F=1. Thus,

O':.i'*" — flz

Otherwise the simulations will be generated as before, except we now have a different mean and
phenotypic variance.
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