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Plant Breeding Basics

Objectives

Place plant breeding activities within a framework of three categories based on goals:

• Genetic improvement

• Cultivar development

• Product placement

Fig. 1 Plant breeding research activities at Makerere University in Uganda. Photo by Iowa State University.



Definition

Plant Breeding has many de�nitions. A working de�nition to consider:

Plant Breeding is the genetic improvement of crop species.

This de�nition implies that a process (breeding) is applied to a crop, resulting in genetic changes that are

valued because they confer desirable characteristics to the crop. Current breeding programs are the result of

thousands of years of re�nements that have been implemented through considerable trial and error.

Re�nements to the breeding processes are constrained by limited resources, technologies and the reproductive

biology of the species. Thus, the challenge of designing a plant breeding program might be thought of as the

engineering counterpart to plant science.

Fig. 2 Plant breeding research activities at Makerere University in Uganda. Photo by Iowa State University.



Other Definitions

• Art of plant breeding: “… the ability to discern fundamental differences of importance in the plant material

available and to select and increase the more desirable types…” Hayes and Immer (1942)

• “Plant breeding, broadly de�ned, is the art and science of improving the genetic pattern of plants in

relation to their economic use.” Smith (1966).

• “Plant breeding is the science, art, and business of improving plants for human bene�t.” Bernardo (2002).

Fig. 3 Individual plants of intermediate wheatgrass are tied into bundles to be cut and threshed in order to selected the

plants with the highest yield and largest seed. Photo by Dehaan; licensed under CC-BY-SA 3.0 via Wikimedia Commons.



Organization of Plant Breeding Activities

For the purposes of applying appropriate quantitative genetic models in plant breeding, it is important to

understand the distinctions among three types of plant breeding projects: genetic improvement, cultivar

development and product placement. The distinctions among these three types of projects are nuanced aspects

of every plant breeding program, yet the distinctions are critical for applying the correct models for data

analyses used in decision-making.



Cultivar Development

The primary goal of a genetic improvement (red arrows) project is to identify lines to cycle into the breeding

nursery for purposes of genetic improvement of the breeding population. Identi�cation of lines to select is

accomplished through assays of segregating lines (synthetics, hybrids) with trait-based markers, and small plot

�eld trials in single and Multi-Environment �eld Trials (METs). Data analyses will include analyses of binary

traits with binomial and multinomial models and quantitative traits with mixed linear models, where the

segregating lines will be modeled as random effects and the environments as �xed effects.

The primary goal of the cultivar development project (blue �lters) is to identify cultivars that have potential to

be grown throughout a targeted population of environments. Thus, in a cultivar development project, selected

lines from segregating populations will be evaluated for quantitative traits in multi-environment trials.

Data analyses in the Regional Trials of a cultivar development project will also be based on mixed linear

models, however in this case, lines are often modeled as �xed effects while the environments are modeled as

random effects.

The goal of a product placement project are again distinct from genetic improvement and cultivar development.

In a product placement project agronomic management practices as well as cultivars are selected for the �eld

trials. These are often organized in hierarchical (split plot) experimental designs. Thus, the parameters of a

mixed linear model associated with agronomic practices and cultivars will be modeled as �xed effects, while

various levels of residual variability associated with split plot experimental units will be modeled as random

Fig. 4 A model of plant breeding activities.



effects.

For an introductory course on Quantitative Genetics we will focus primarily on genetic improvement, a little bit

on cultivar development projects and no time will be spent on product placement projects.



Decision-Making Process

Conceptually, genetic improvement consists of a simple two-step, iterative decision-making process:

1) selection of parents for crosses and 2) evaluation of their segregating progeny for the next generation of

parents and development of cultivars (Fehr, 1991). Operational implementation of genetic improvements for any

given species requires far more detail. 

For example, Comstock (1978) outlined the major activities involved in genetic improvement by plant breeders

(below). 

The details of any particular breeding program will likely consist of many activities. At the same time, it is

important to categorize these activities according to the goals that transcend all plant breeding programs.

Genetic Improvement by Plant Breeders



A Brief History of Quantitative Genetics

Quantitative genetics addresses the challenge of connecting traits measured on quantitative scales with genes

that are inherited and measured as discrete units. This challenge was originally addressed through

development of theory between 1918 and 1947. The theory is now referred to as the modern synthesis, and

required another 50 years for technological innovations and experimental biologists to validate. Luminaries

such as RA Fisher, Sewell Wright, JBS Haldane and John Maynard Smith were able to develop this theory

without the bene�t of high throughput ‘omics’ technologies. Indeed the modern synthesis was developed before

knowledge of the structure of DNA.

Unlike animal breeders, plant breeders implement breeding processes in organisms that cannot be protected

from highly variable environments. Because plants are rooted to the sites in which they are planted, they have

evolved unique adaptive mechanisms including whole genome duplications that enable biochemical diversity

through secondary metabolism, and multiple forms of reproductive biology.

Because of the reproductive and biochemical diversity in domesticated crops, plant breeders felt little need to

develop quantitative genetics beyond initial concepts associated with Analysis of Variance (ANOVA; Fisher,

1925; 1935). Thus, plant breeders focused their efforts on development of �eld plot designs and careful plot

management practices to assure balance in �eld plot data for ANOVA.



Modern Synthesis Theory

The lack of reproductive and biochemical diversity in animal species created constraints that forced animal

breeders to concentrate their efforts on development of quantitative genetics beyond the ideas of Fisher (1918,

1928, 1929). JL Lush (1948) and his student CR Henderson (1975) realized that genetic improvement of

quantitative traits in domesticated animal species could not take advantage of replicated �eld trials that are

based access to cloning, inbreeding, and the ability to produce dozens to thousands of progeny per individual.

With these constraints it was not possible to obtain precise estimates of experimental error or Genotype by

Environment interaction effects using classical concepts from the ANOVA. So, they developed the statistical

concepts of Mixed Model Equations (MME) to estimate breeding values of individuals with statistical

properties of Best Linear Unbiased Prediction (BLUP). These very powerful statistical approaches were largely

ignored by plant breeders until about 1995 (Bernardo, 1995).



Marker Technologies

The power of these methods is derived from knowledge of genealogical relationships. For some commercial

plant breeding organizations genealogical information had been carefully recorded for purposes of protecting

germplasm. Thus it was relatively easy for commercial breeding companies such as Pioneer and Monsanto to

implement these methods. Next, international plant breeding institutes began to incorporate mixed linear

models to estimate breeding values in their genetic improvement programs (Crossa et al, 2005); again it was

fairly easy to do this with extensive pedigrees information. Since about 2005 many plant quantitative

geneticists have published extensively on the bene�ts of this approach to genetic improvement of crops

(Piepho, 2009), although there remain many academic plant breeding organizations that do not utilize MME to

estimate breeding values with BLUP statistical properties, primarily because pedigrees of lines developed by

academic programs have not been widely shared, nor aggregated into a shared repository. In parallel to the

adoption of MME by plant breeders, there has been development of relatively inexpensive genetic marker

technologies. These have enabled use of MME for Genomic Estimates of Breeding Values (GEBV; Meuwissen,

2001), thus overcoming the lack of genealogical knowledge for many crop and tree species.



Trait Measures

Trait Measures - Objectives

Demonstrate ability to distinguish among the various types of phenotypic and genotypic traits that are assessed

routinely in a plant breeding program.



Categorical Scales

In the context of plant breeding, quantitative genetics provides us with a genetic understanding of how

quantitative traits change over generations of crossing and selection. Recall traits can be evaluated on

categorical or quantitative scales. If the trait of interest is evaluated based on some quality, for example

disease resistance, �ower color, developmental phase, then it is considered a categorical trait. There are three

further distinctions that can be made among categorical scales:

• Binary consist of only two categories such as resistant and susceptible or small and large;

• Nominal consist of unordered categories. For example, viral disease vectors might be categorized as

insects, fungi or bacteria;

• Ordinal consist of categorical data where the order is important. For example, disease symptoms might

be classi�ed as none, low, intermediate and severe.

Fig. 5 Flower color variation in Aloe chabaudii from Manica province in Mozambique. Photo by Ton Rulkens, licensed

under CC-SA 3.0 via Wikimedia Commons.



Quantitative Scales

Binary, nominal and ordinal data are typically analyzed using Generalized Linear Models. Such models require

that we model the error structures using Poisson or Negative Binomial distributions and are beyond the scope

of introductory quantitative genetics. It is important to remember, however, that it is not advisable to apply

General Linear Models to categorical data types.

There are two further distinctions of traits that are evaluated on quantitative scales:

• Discrete data occur when there are gaps between possible values. These type of data usually involve

counting. Examples include �owers per plant, number of seeds per pod, number of transcripts per sample

of a developing tissue, etc.

• Continuous data can be measured and are only limited by the precision of the measuring instrument.

Examples include plant height, yield per unit of land, seed weight, seed size, protein content, etc.

◦ In the context of measurement, Precision refers to the level of detail in the scale of the

measurement.

◦ Accuracy refers to whether the measurement represents the true value.



Types of Models

Types of Models - Objectives

Be able to place plant breeding activities within a framework of three categories based on goals:

• Genetic improvement

• Cultivar development

• Product placement



Definition And Purpose Of Models

Models are representations or abstractions of reality. Some models can be very useful, e.g., prediction of

phenotypes even if they are not accurate. If data are modeled well, they can be used to generate useful graphics

that will inform the breeder about data quality, integrity and novel discoveries. Most often predictive models are

in the form of mathematical functions. Also, there are models for organizing data, analyses, processes and

systems. Yes, breeding systems and genetic processes can be represented as sets of mathematical equations.

Historically the subject of optimizing a breeding system has been approached through ad hoc management

activities that are often tested through trial and error. In the future, design and development of plant breeding

systems will need to be treated with the same rigor that engineers use to design optimal manufacturing

systems. Thus, it will be important to learn how to model breeding systems as mathematical functions.



Data Modeling

Even if it were possible to record data without error, as soon as we evaluate a trait and record the value on a

living organism, we lose information about the organism. The challenge is to develop a data model that will

minimize recording errors and loss of information.

What Is Data Modeling? 

• Data modeling is the process of de�ning data requirements needed to support decisions.

• Data modeling is used to assure standard, consistent and predictable management of data as a resource

for making decisions.

• Data models support data and decision systems by providing de�nitions and formats. If the data are

modeled consistently throughout a plant breeding program then compatibility of data can be achieved.

If a single data structure is used to store and access data, then multiple data analyses can share data.



Example Of Steps For Modeling Data In A Plant Breeding Project

• Outline the plant breeding process.

• Determine the experimental or sampling units that will be evaluated at each step in the process.

• Determine the number of experimental or sampling units that will be evaluated.

• Characterize the experimental and sampling units as well as the traits that will be evaluated at each step

in the process.

An experimental unit is de�ned as the basic unit to which a treatment will be applied. A sampling unit is de�ned

as a representative from a population of interest. In quantitative genetics we evaluate responses (traits) of

experimental or sampling units on continuous scales, e.g., grain yield, plant height, harvest index, etc. Note that

a measurement taken on a continuous scale is not the same as a continuously measured trait. Continuously

measured traits, such as grain �ll, transpiration, disease progression or gene expression are measured

continuously over the growth and development of an organism. Historically, evaluation of continuously

changing traits have been too labor intensive to justify their expense. The emergence of ‘phenomics’ using

image processing will overcome the limitations of acquiring the data. However, the need to store and manage

‘big data’ from phenomics is going to require novel data models and computational infrastructure or else the

acquisition of such data will be meaningless.



Organizing Data

Data models address the need to organize data for subsequent analysis.

A simple data model consists of a Row x Column matrix, where all experimental or sampling units are

represented in rows and the evaluated characteristics or attributes for each unit are recorded in the columns:

Alternatively the Ar x c matrix can be represented as:

• A = {aij}, for i = 1,2,3 … r and j = 1,2,3 … c

• I would represent line 1, line2, line3 … line r and

• j would represent location, replication, SNP locus 1, disease rating, … yield etc.

Fig. 6



Preserving Data

While the A(r x c) matrix is su�cient for small research projects, it is inadequate and cumbersome for breeding

programs consisting of multiple types of evaluation trials at multiple stages of development. For such programs

relational databases are designed to optimize the ability to search and prepare data for analysis and

interpretation using statistic and genetic models (Fig. 7). Further, unless data in an A(r x c) matrix is

disseminated through “read only” access, there is potential for alteration of originally recorded data. Thus, the

use of Excel �les, too commonly used to store experimental data in an A(r x c) matrix, can create serious ethical

issues. While such issues do not disappear with relational databases, relational databases enable more

effective protection of data as originally recorded. Recently, a publicly available database designed for

organizing data from plant breeding projects has been developed. Known as the Breeding Management System,

it is part of the Integrated Breeding Platform designed and developed by the Generation Challenge Program of

the Consultative Group of International Agricultural Research centers.

https://pbea.agron.iastate.edu/files/af25640png
https://pbea.agron.iastate.edu/files/af25640png
https://pbea.agron.iastate.edu/files/af25640png
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A Relational Database

While the development of relational databases is outside of the scope for this course, it is important to note

that plant breeders routinely work with database developers to design, implement and populate relational

databases.

Fig. 7 A relational database for plant breeding research.



Phenotypic Models

For the most part, plant breeders rely on linear models to represent measured traits. While we will concentrate

on statistic and genetic models for continuous traits, it is important to recognize that there are well developed

data analysis methods for binary, nominal and ordinal traits (see McCullagh and Nelder, 1989 or Christensen,

1997 for explanations of Generalized Linear Models). A general (not Generalized) linear model for the phenotype

can be denoted:

Equation 1  

where Yi represents the phenotype of individual i and ei represents random variability (or lack of precision) in

the measurement of the phenotype of individual i. Further, we often assume that the variability associated with

each measurement, ei are distributed as random identical and independent Normal variables. This simple model

is typically associated with the hypothesis that the only source of variability is that due to chance (noise). We

can extend the simple model to include genetic and environmental sources (signals) of variability:

Equation 2



Two Linear Models

Scalar Notation

Throughout this course we utilize two types of models to analyze data:

The parameters of Equation 1 represent the intercept and slope of a line that can be �t to data consisting of

pairs of genotypic values, Gi, and Phenotypic responses, where the genotypic values are continuous and known

(i.e., measured without error) while the phenotypic data are measured with error in plots (experimental units).

The parameters of Equation 2 represent a population mean, genotypic units, gi, rj replicates of the genotypic

units and the phenotypic, Yij responses. The genotypes are usually categorical designators of distinct

segregating lines and cultivars while the phenotypic data are measured with error on these genotypes in

replicated plots (experimental units).

We typically estimate the parameters of Equation 1 using least squares regression methods. These methods

are based on the idea of minimizing the squared differences between the model parameters and the measured

phenotypic value:

Taking the partial derivatives of Equation 3 with respect to β0 and β1 and setting the resulting two equations =

0, we �nd that

The result is a prediction equation:

Equation 1

Equation 2

Equation 3

Equation 4



Note that the predicted values are placed on the �tted line. Such values are sometimes referred to as ‘shrunken’

estimates because relative to the observed values they show much less variability.

If it were possible to obtain the true genotypic values, Gi, then we could routinely use [LMM.1] to predict

phenotypic performance of individual i. Instead, plant breeders have used [LMM.2] and its expanded versions to

evaluate segregating lines and cultivars.

Equation 5



Matrix Notation

Equation 1 also can be represented as

and Equation 2 could be represented as

although Equation 2 is usually represented as

which the beginning student often mis-interprets as the matrix form of Equation 1 with an added set of

parameters Z. The matrix form of Equation 2 is actually a mixed linear model equation and not a simple

expansion of the matrix form of Equation 1.



Exploratory Data Analysis (EDA)

Exploratory Data Analysis - Objectives

• Distinguish between descriptive and inferential statistics

• Conduct and interpret exploratory data analyses

• Distinguish parameters from estimators and estimates

• Estimate means, in both balanced and unbalanced data sets

• Estimate variances, covariances and correlations in balanced data sets



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Statistical Inference consists of two components: estimation and hypothesis testing. In this section, we review

some introductory estimation concepts. We will review hypothesis testing and types of decision errors later in

the section Statistical Inference: Hypothesis Testing.

https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-3
https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-3
https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-3


Exploratory Data Analyses

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, correlations, and

coe�cients of variation. These exploratory data analysis (EDA) techniques that provide descriptive statistics

should always be used prior to estimation and hypothesis testing.



Estimation: Sample Average

In population and quantitative genetics parameters are quantities that are used to describe central tendencies

and dispersion characteristics of populations. Parameters are usually presented in the context of theoretical

models used to describe quantitative and population genetics of breeding populations. Parameters of interest

in population and quantitative genetics include frequencies, means, variances and covariances.

Because populations often consist of an in�nite or very large number of members it may be impossible to

determine these quantities. Instead statistical inferences, i.e., estimates, about the true but unknowable

parameters are determined from samples. The rule by which a statistical estimate of a parameter is

constructed is known as the estimator. For example, the description of how to calculate a sample average

given by

represents an estimator of the population mean, while the calculated value, e.g., 132.38, obtained from 25 (n)

samples (Xi) from a population would be an estimate of the population average.

Equation 6



Estimation of Means

The most common inferential statistic is the estimate of a mean. Computing arithmetic means, either simple or

weighted within-group averages represents a common approach to summarizing and comparing groups. Data

from most agronomic experiments include multiple treatments (or samples) and sources of variability. Further,

the numbers of observations per treatment often are not equal; even if designed for balance, some observations

are lost during the course of an experiment. Thus, most data sets come from experiments that have multiple

effects of interest and are not balanced. In such situations, the arithmetic mean for a group may not accurately

re�ect the "typical" response for that group because the arithmetic mean may be biased by unequal weighting

among multiple sources of variability. The calculation of Least Square Means, lsmeans, was developed for such

situations. In effect, lsmeans are within-group means appropriately adjusted for the other sources of variability.

The adjustments made by lsmeans are meant to provide estimates as though the data were obtained from a

balanced design. When an experiment is balanced, arithmetic averages and lsmeans agree.



Estimation of Means: Example

Consider a data set consisting of 3 cultivars evaluated in a Randomized Complete Block Design consisting of 5

replicates at each of 3 locations (Table 1). Despite exercising best agronomic practices, note that some plots at

some locations did not produce phenotypic values.

The estimated means and number of observations for each cultivar indicate that there is very little difference

among the cultivars, although cultivar C appears to have the highest yield (Table 2).

A closer investigation of the data reveals that the means are unequally weighted by location effects.

Recalculating the lsmeans for the cultivars indicates more distinctive differences among the cultivars, once the

differences among environments were taken into account (Table 3).

Table 1

Cultivar Location Yj,k

A Ames 17, 28, 19, 21, 19

A Sutherland 43, 30, 39, 44, 44

A Castana -, -, 16, -, -

B Ames 21,21, -, 24, 25

B Sutherland 39, 45, 42, 47, -

B Castana -, 19, 22, -, 16

C Ames 22, 30, -, 33, 31

C Sutherland 46, -, -, -, -

C Castana 25, 31, 25, 33, 29

Table 2

Cultivar N Average

A 11 29.1

B 11 29.2

C 11 30.2



Table 3

Cultivar lsmean

A 25.6

B 28.3

C 34.4



Estimation of Variances

If we model a trait value as:

Then the estimator of the variance of the population consisting of individuals, i = 1,2,3 …. N is:

Since it is not possible to evaluate a population of a crop species (think about it), we usually take a sample of

individuals representing the population, i = 1,2,3 … n, where n << N. The estimator of the sample variance from a

sample of n values is:

Equation 7

Equation 8

Equation 9



Estimation of Covariance

The covariance is a measure of the joint variation between two variables. Let’s designate one trait X and a

second trait Y. We can model Y as before and we can model X in a similar manner, i.e.,

and the estimator of the variance of X is

Thus, the estimator of the covariance of X and Y is

Again, it is not possible to evaluate a population so we usually take a sample of individuals representing the

population, i = 1,2,3 … n, where n << N. So the estimator of a sample covariance is:

Equation 10

Equation 11

Equation 12

Equation 13



Estimation of Variance Components

If we extend our simple model to include genetic and environmental sources of variability:

then, noting that µ is a constant and applying some algebra we can show that the Variance of Y is

assuming the errors are independently distributed. If we further assume that genotype and environment are

independent and that there is no genotype x environment interaction:

Equation 14

Equation 15

Equation 16



Questions to Consider

A question to consider is whether the parameters of the linear model Y = µ + G + E + e represent �xed or random

effects, because this determination will affect the way in which we estimate variance components and whether

each is contributing signi�cantly to the overall phenotypic variability. This determination depends on the

inference space to which results are going to be applied. Fixed effects denote components of the linear model

with levels that are deliberately arranged by the experimenter, rather than randomly sampled from a population

of possible levels. Inferences in �xed effect models are restricted to the set of conditions that the experimenter

has chosen, whereas random effect models provide inferences for a population from which a sample is drawn.

As a practical matter, it is hard to justify designating a parameter as a random effect if the parameter space is

not sampled well. Consider environments, for example, since we cannot control the weather, it is tempting to

designate environments as random effects, however drawing inferences to a targeted population of

environments will be di�cult if we sample a small number of environments, say less than 40. Thus, as a

practical matter, the genetic improvement component of a breeding program will consider environments as

�xed effects (or nuisance parameters), because our main interest is in drawing inferences about the members

of a breeding population and their interactions with environments, wheras the product placement component of

a breeding program will evaluate a relatively small number of selected genotypes in a large number of

environments. Thus, for this phase the models will consider cultivars (lines, hybrids, synthetics, etc.) as �xed

effects and environments as random effects.



Mixed Models

Because the inference space of interest for genetic improvement is derived from random samples of genotypes

obtained from a conceptually large breeding population, we do not consider genotypes as �xed effects until the

genotypes have been selected for a cultivar development program. At the same time it is a rare experimental

design that does not include a �xed effect. Often random effects, such as environments are classi�ed as �xed

effects in mixed models so that inferred predictions are determined using computational methods that provide

restricted maximum likelihood methods. More on this topic can be found in the section on Statistical

Inference.



Installation of R

Introduction and Objectives - Installation of R

• Learn to download and install R and R Studio.

• Learn to start an R analysis project.

• Learn how to upload data that is CSV formatted.



Background

R is a powerful language and environment for statistical computing and creating graphics. The main

advantages of R are the fact that R is a free software and that there is a lot of help available. It is quite similar

to other programming tools such as SAS (not freeware), but more user-friendly than programming languages

such as C++ or FORTRAN. You can use R as it is, but for educational purposes we prefer to use R in combination

with the RStudio interface (also free software), which has an organized layout and several extra options.

Directory Of R Commands Used

• getwd()

• setwd()

• ?

• help.search()

• example()

• read.csv()

• rm()

• rm(list=())

• head()

• hist()

• attach()

• boxplot()

• str()

• as.factor()

• aov()

• summary()

References

Up and Running with R (Internet resource)

https://www.lynda.com/R-tutorials/Up-Running-R/120612-2.html
https://www.lynda.com/R-tutorials/Up-Running-R/120612-2.html
https://www.lynda.com/R-tutorials/Up-Running-R/120612-2.html


Exercise

Imagine that you’ve been recently hired as a data analyst for a brand new seed company and have been asked

by your supervisor to conduct an analysis of variance (ANOVA) on yield trial data from 3 synthetic maize

populations planted in 3 reps each. Your company does not have funds to purchase commercial statistical

software, thus you must either do the analysis by hand or use freely available software. Since you will have to

analyze much larger data sets in the near future, you opt to learn how to carry out the ANOVA using the freely

available software R and R-Studio.



Install R

To install R on your computer, go to the home website of R and do the following (assuming you work on a

Windows computer):

• Click CRAN under Download,Packages in the left bar

• Choose a download site close to you (eg: USA: http://streaming.stat.iastate.edu/CRAN/)

• Choose Download R for Windows

• Click Base

• Choose Download R 3.1.1 for Windows and choose default answers for all questions (click “next” for all

questions)

Install RStudio

After �nishing above setup, you should see an icon on your desktop. Clicking on this would start up the

standard interface. We recommend, however, using the RStudio interface. To install RStudio, go to the RStudio

homepage and do the following (assuming you work on a windows computer):

• Click Download RStudio

• Click Desktop

• Click RStudio 0.98.977 - Windows XP/Vista/7/8 under Installers for ALL Platforms to initiate download

• Open the .exe �le from your computer’s downloads and run it and choose default answers for all

questions (click “next” for all questions)

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
http://streaming.stat.iastate.edu/CRAN/
http://streaming.stat.iastate.edu/CRAN/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/


RStudio Layout

1. Script Window: In this window, collections of commands (scripts) can be edited and saved. If this

window is not present upon opening RStudio, you can open it by clicking File→New File→R Script.  Just

typing a command in the Script window and clicking enter will not cause R to run the command; the

command has to get entered in the Console window before R executes the command. If you want to run a

line from the script window, you can click Run on the toolbar or press CTRL+ENTER to enter the line into

the console view. 

2. Environment / History Window: Under the Environment tab you can see which data and values R has in its

memory. The History tab shows what has been entered into the console.

3. Console window: Here you can type simple commands after the > prompt and R will then execute your

command. This is the most important window, because this is where R actually runs commands. 

4. Files / Plots / Packages / Help: Here you can open �les, view plots (also previous plots), install and load

packages or use the help function. 

5. You can change the size of each of the windows by dragging the grey bars between the windows. 



Working Directory

Your working directory is a folder on your computer from where �les can be entered, or read, into R. When you

ask R to open a �le with a read command, R will look in the working directory folder for the speci�ed �le. When

you tell R to save a data set or �gure which you’ve created, R will also save the data or �gure as a �le in the

same working directory folder.

Set your working directory to a folder where all of the example data �les for this lesson are located.

1. Create a folder on your desktop; for this example the folder will be called wd. Then, obtain the default

working directory by entering the command getwd() into the console window. R returns the default

working directory below.

getwd()

[1] "C:/Users/<Username>/Documents"

2. Next, set the working directory to the folder on your desktop, wd, using the setwd() command in the

Console window:

setwd("C:/Users/<Username>/Desktop/wd") 

Notice that to set our working directory to a folder on our desktop, we enter everything that was returned by R

from the getwd()command before the word Documents, change Documents to Desktop, then add a forward

slash followed by the name of our folder (wd).

Make sure that the slashes are forward slashes and that you don't forget the quotation marks. R is case

sensitive, so make sure you write capitals where necessary. Within the RStudio interface you can also go to

Session → Set working directory to select a folder to be your working directory.



Libraries

R can do many kinds of statistical and data analyses. The analyses methods are organized in so-called

packages. With the standard installation, most common packages are installed. To get a list of all installed

packages, go to the packages window (lower right in RStudio). If the box in front of the package name is ticked,

the package is loaded (activated) and can be used. You can also type library() in the console window to view the

loaded packages.

There are many more packages available on the R-website. If you want to install and use a package (for

example, the package called “geometry”) you should:

1. Install the package: click on the “packages” tab at the top of the lower-right window in RStudio. Click

“install”, and in the text box under the heading “packages”, type “geometry”. You can also simply enter

install.packages(”geometry”) in the console window to install the package.

2. Load the package: under the “packages” tab at the top of the lower-right window in RStudio, check the

boxes of the packages you wish to load (i.e. “geometry”). You can also simply type library(”geometry”) in

the console window to load the package.



Getting Help in R

If you know the name of the function you want help with, you can just type a question mark followed by the

name of the function in the console window. For example, to get help on aov, just enter:

?aov

Sometimes you don’t know the exact name of a function, but you know the subject on which you want help (i.e.

Analysis of Variance). The simplest way to get help in R is to click the “Help” tab on the toolbar at the top of the

bottom-right window in RStudio, then enter the subject or function that you want help with in the search box at

the right. This will return a list of help pages pertaining to your query.

Another way to obtain the same list of help pages is by entering the help.search command in the Console. The

subject or function which you’d like information about is put inside of brackets and quotation marks, directly

following the help.search command. For example, to obtain information about Analysis of Variance, enter into

the console:

help.search("Analysis of Variance")

If you’d like to see an example of how a function is used, enter “example” followed by the function that you’d

like to see an example of (within quotation marks and brackets). For instance, if we wanted to see an example

of how the aov function can be used, we can enter into the console:

example("aov")

An example is returned in the console window.



Reading the CSV File

Now, we want to read the CSV �le from our working directory into RStudio. At this point, we learn an important

operator: <-. This operator is used to name data that is being read into the R data frame. The name you give to

the �le goes on the left side of this operator, while the command read.csv goes to its right. The name of the

CSV �le from your working directory is entered in the parenthesis and within quotations after the read.csv

command. The command header = T is used in the function to tell R that the �rst row of the data �le contains

column names, and not data.

Read the �le into R by entering into the Console:

data <- read.csv("Review Models Install R ALA data.csv", header = T)

Tip: If you are working out of the Console and received an error message because you typed something

incorrectly, just press the ↑ key to bring up the line which you previously entered. You can then make corrections

on the line of code without having to retype the entire line in the console window again. This can be an

extremely useful and time saving tool when learning to use a new function. Try it out.

If the data was successfully read into R, you will see the name that you assigned the data in the

Workspace/History window (top-right).

https://pbea.agron.iastate.edu/files/review-models-install-r-ala-datacsv
https://pbea.agron.iastate.edu/files/review-models-install-r-ala-datacsv


Examining the Data

Let’s look at the �rst few rows of the data. We can do this by entering the command head(data) in the console.

If we want to look at a speci�c number of rows, let’s say just the �rst 3 rows, we can enter head(data, n=3) in

the Console. Try both ways.

First, enter into the console:

head(data)

Pop  Rep  Yield

1   30    1  137.1

2   30    2  124.4

3   30    3  145.9

4   40    1  166.1

5   40    2  147.4

6   40    3  142.7

Now, try looking at only the �rst 3 rows:

head(data)

Pop  Rep  Yield

1   30    1  137.1

2   30    2  124.4

3   30    3  145.9



Viewing and Removing Datasets

Now, let’s say we are �nished using this dataset and want to remove it from the R data frame. To accomplish

this, we can use the rm command followed by the name of what we want removed in parenthesis. Let’s remove

the data from the R data frame. Enter into the console rm(data).

rm(data)

The dataset data should no longer be present in the Workspace/History window.

What if we have many things entered in the R data frame and want to remove them all? There are two ways that

we can do this. To demonstrate how, let’s �rst enter 3 variables (x,y, and z) into the R data frame. Set x equal to

1, y equal to 2, and z equal to 3.

x<-1

y<-2

z<-3

Clicking on ‘clear’ in the History/Environment window (top right) will clear everything in the R data frame.

Another way to remove all data from the R data frame is to enter in the console:

rm(list=1s())

Try both ways.



EDA with R

EDA with R - Objectives

• Students will conduct exploratory data analyses (EDA) on data from a simple Completely Randomized

Design (CRD).

• Assess whether students know how to interpret results from EDA.

• Students will conduct an Analysis of Variance (ANOVA) on data from a simple CRD.

Directory Of R Commands Used

• getwd()

• setwd()

• read.csv()

• rm()

• rm(list=())

• hist()

• attach()

• boxplot()

• str()

• as.factor()

• aov()

• summary()



Set Working Directory

Before you can conduct any analysis on data from a text �le or spreadsheet, you must �rst enter, or read, the

data �le into the R data frame. For this activity, our data is in the form of an Excel comma separated values (or

CSV) �le; a commonly used �le type for inputting and exporting data from R.

Make sure that the data �le for this exercise is in the working directory folder on your desktop.

Note: We previously discussed how to set the working directory to a folder named on your desktop. For this

activity, we will repeat the steps of setting the working directory to reinforce the concept.

In the Console window, enter getwd(). R will return the current working directory below the command you

entered:

getwd()

[1] "C:/Users/<Username>/Documents"

Set the working directory to the folder on your desktop by entering setwd(). For a folder named ‘wd’ on our

desktop, we enter:

setwd("C:/Users/<Username>/Desktop/wd")

Please note that the working directory can be in any other folder as well, but the data �le has to be in that

speci�c folder.



Reading the CSV File

Now, we want to read the CSV �le from our working directory into RStudio. At this point, we learn an important

operator: <-. This operator is used to name data that is being read into the R data frame. The name you give to

the �le goes on the left side of this operator, while the command read.csv goes to its right. The name of the

CSV �le from your working directory, in this case CRD.1.data.csv, is entered in the parenthesis and within

quotations after the read.csv command. The command header = T is used in the function to tell R that the �rst

row of the data �le contains column names, and not data.

data <- read.csv("CRD.1.data.csv", header = T)

Tip: If you are working out of the Console and received an error message because you typed something

incorrectly, just press the ↑ key to bring up the line which you previously entered. You can then make corrections

on the line of code without having to retype the entire line in the console window again. This can be an

extremely useful and time saving tool when learning to use a new function. Try it out.

If the data was successfully read into R, you will see the name that you assigned the data in the

Workspace/History window (top-right).

https://pbea.agron.iastate.edu/files/crd1datacsv
https://pbea.agron.iastate.edu/files/crd1datacsv
https://pbea.agron.iastate.edu/files/crd1datacsv
https://pbea.agron.iastate.edu/files/crd1datacsv


Exploring the Data

Let’s do some preliminary exploring of the data.

Read the data set into the R data frame.

data <- read.csv("CRD.1.data.csv", header = T)

First, let’s look at a histogram of the yield data to see if they follow a normal distribution. We can accomplish

this using the hist command.

Enter into the console:

hist(data$Yield, col="blue", main= "Histogram of Yield of 3 Synthetic Maize Populations",

xlab="Yield (bushels/acre)", ylab="Frequency")

R returns the histogram in the Files/Plots/Packages/Help window (bottom-right).

https://pbea.agron.iastate.edu/files/crd1datacsv
https://pbea.agron.iastate.edu/files/crd1datacsv


Histogram

Let’s go through the command we just entered: data$Yield speci�es that we want to plot the values from the

column Yield in the data, col=”blue” indicates which color the histogram should be, the entry in quotations after

main= indicates the title that you’d like to give the histogram, the entries after xlab= and ylab= indicate how the

x and y axes of the histogram should be labeled. The histogram appears in the bottom-right window in RStudio.

The histogram can be saved to your current working directory by clicking ‘export’ on the toolbar at the top of the

lower-right window, then clicking “save plot as PNG” or “save plot as a PDF”. You may then select the size

dimensions you would like applied to the saved histogram.

Fig. 8



Boxplots

Let’s now look at some boxplots of yield by population for this data. First, enter into the Console window

attach(data). The attach command speci�es to R which data set we want to work with, and simpli�es some of

the coding by allowing us just to use the names of columns in the data, i.e. Yield vs. data$Yield. After we enter

the attach command, we’ll enter the boxplot command.

attach(data)

boxplot(Yield~Pop, col="red", main="Yield by Population", xlab="Synthetic Population",

ylab="Yield")

R returns the boxplot in the bottom-right window.

Let’s go through the boxplot command: Yield~Pop indicates that we want boxplots of the yielddata for each of

the 3 populations in our data, col= indicates the color that we want our boxplots to be, main= indicates the title

we want to give the boxplots, and xlab= and ylab= indicate what we want the x and y axes labeled as.

Note: Yield is capitalized in our data �le, thus it MUST also be capitalized in the boxplot command.

Fig. 9



Mean and Coefficient of Variance

The coe�cient of variance can be calculated for each population in the data set. Looking at the data, we can

see that lines 1 to 3 pertain to population 30. We know that the coe�cient of variation for a sample is the mean

of the sample divided by the standard deviation of the sample. By using the command mean(), we can calculate

the mean for a sample. Remember that to specify a column from a data frame, we use the $ operator. If we

want to calculate the mean of population 30 from the data (rows 1 to 3 in the data), we can enter

mean(data$Yield[1:3])

To calculate the standard deviation of the yield for population 30, enter

sd(data$Yield[1:3])

The coe�cient of variance is therefore calculated by entering

mean(data$Yield[1:3])/sd(data$Yield[1:3])



One-Factor ANOVA of a CRD

Now that we’ve gained some intuition about how the data behave, let’s carry out an ANOVA with one factor

(Pop) on the data. We �rst need to specify to R that we want Population to be a factor. Enter into the Console

Pop<-as.factor(Pop)

Let’s go through the command above: as.factor(data$Pop) speci�es that we want the Pop column in dataset

data to be a factor, which we’ve called Pop.

Now that we have population as a factor, we’re ready to conduct the ANOVA. The model that we are using for

this one-factor ANOVA is Yield=Population.

In the Console, enter

mean(data$Yield[1:3])/sd(data$Yield[1:3])



Interpret the Results

Let’s look at the ANOVA table. Enter out in the Console window.

out

In this ANOVA table, the error row is labelled Residuals. In the second and subsequent columns you see the

degrees of freedom for Pop and Residuals (2 and 6), the treatment and error sums of squares (6440 and 1011),

the treatment mean square of 3220, the error variance = 169, the F ratio and the P value (19.1 and 0.0025). The

double asterisks (**) next to the P value indicate that the difference between the yield means of the three

populations is signi�cant at 0.1% (i.e. we reject the null hypothesis that the yield means of each population are

statistically equivalent). Notice that R does not print the bottom row of the ANOVA table showing the total sum

of squares and total degrees of freedom.



Hypothesis Tests

Hypothesis Tests - Objectives

Demonstrate ability to interpret types of errors that can be made from testing various kinds of hypotheses.



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, and the sample

average, median, mode. These exploratory data analysis (EDA) techniques should always be used prior to

estimation and hypothesis testing. However, prior to conducting EDA, the phenotype should be modeled using

the parameters in the experimental and sampling designs.



Null and Alternative Hypotheses

Hypotheses are questions about parameters in models. For example, “Is the average value for a trait different

than zero?” is a question about whether the parameter µ is non-zero. Formally, the proposition

is called the null hypothesis, while a proposition

is called an alternative hypothesis.

A test statistic is used to quantify the plausibility of the data if the null hypothesis is true. For this simple

hypothesis the value of the test statistic should be close to zero if the null hypothesis is true and far from zero

if the alternative hypothesis is true. Notice that in all linear models there is a parameter, ε, included to indicate

that there is some random variability in the data that cannot be ascribed to the other parameters in the model. It

is entirely possible that the variability in the data is due entirely to ε and that an estimate of µ that is not zero is

due to this random variability.



Inferential Errors from Hypothesis Testing

How often will the estimate of µ be different from zero when Ho is true? We can answer this question by

rerunning an experiment in which we know µ = 0 a million times, generate a histogram of the resulting

distribution and then see how often (relative to 1 million) an estimated mean that is equal to or more extreme

than our experimental estimate occurs. This is the frequency associated with �nding our estimated value or a

more extreme value when Ho is true.

The good news is that we don’t have to conduct a million such experiments because someone else has already

determined the distribution when µ = 0, is true. The frequency value associated with a test statistic as extreme

or more extreme than the one observed is often referred to as a ‘p’ value. The smaller the p value, the more

comfortable we should be in rejecting the null hypothesis in favor of an alternative hypothesis. Keep in mind

that we can be wrong with making such a decision. In fact we are admitting that such a decision will be

incorrect at a frequency of p.



Error Types

Consider another simple example where we hypothesize that two genotypes have the same mean for some trait

of interest. The difference between two genotypes is tested by:

where gi and gj are the ith and jth true genotypic effects on the trait of interest. Whether or not a decision based

on observed data is correct depends on the true value of the difference between the means (Table 4).

A Type I error is committed if the null hypothesis is rejected when it is true (δij=0 and the hypothesis of equality

is rejected). A Type II error is committed if the null hypothesis is accepted when it is really false (δij≠0 and the

hypothesis of equality is not rejected). Type I error is also called "false positive", and Type II error is also known

as a "false negative.” A Type III error occurs if the �rst decision is made when the third decision should have

been made. This error also occurs if the third decision was made when the �rst decision was correct. Type III

errors are sometimes called reverse decisions.

Table 4 Possible outcomes in testing the hypothesis that
\(\delta_{ij} = 0\)

. Columns indicate the three possible true states. Rows indicate the three possible decisions made on the basis of

estimates from measured data. 

Decision based on empirical data True Situation

1.  Correct decision Type I error Type III error

2.  Type II error Correct decision Type II error

3.  Type III error Type I error Correct decision



Significance Levels

The probability (or frequency) of a Type I error is the level of signi�cance, denoted by . The choice of  can be

any desirable value between 0 and 1. For example, if a test is carried out at the 5% level,  is 0.05. If you carry

out tests at 5% level you will reject 5% of the hypotheses you test when they are really true. The rejection rate

can be reduced by choosing a lower level of . However, the choice of  will affect the frequency of Type II and

Type III errors.

A Type III error rate, γ, is the frequency of incorrect reverse decisions and is always less than α/2 even for the

smallest magnitudes of the standardized true difference, δij/σd where σd is the parameter value of the standard

error of the mean difference. Representative values of γ are shown below in Table 5.

Table 5 Type III error rates, y, when the df associated with a t-test is 40. 

Standardized

true

difference 

Signi�cance Level ( )

0.05 0.10 0.20 0.40

0.3 0.0127 0.0271 0.0584 0.1283

0.9 0.002 00068 0.0167 0.0438

1.5 0.0005 0.0014 0.0039 0.019

2.1 0.0001 0.0002 0.0008 0.0026

2.7 0.0000 0.0000 0.0001 0.0005



Power of the Test

Last, consider the error that is committed if null hypothesis is not rejected when it is truly false. This is also

known as a Type II error, and the probability of this type of error is denoted by β. It is the frequency of failure to

detect real differences and is also affected by both the choice of α and the magnitude of the standardized true

difference (Table 6).

Notice that α+β≠1.0 . The power of the test is = 1-β and is denoted π, thus β + π = 1.0. The power of a test is the

probability of rejecting the null hypothesis when it is false. It can be increased by decreasing either the value of

α or decreasing the value of σd by increasing the number of replications per treatment or by improving the

experimental design.

Table 6 Type II error rates, ß, or the frequencies of failure to detect differences when the test of signi�cance is based on

40 df.

Standardized

true difference 

Signi�cance Level ( )

0.05 0.10 0.20 0.40

0.3 0.941 0.886 0.781 0.579

0.9 0.863 0.774 0.639 0.437

1.5 0.697 0.571 0.419 0.248

2.1 0.469 0.340 0.214 0.107

2.7 0.251 0.158 0.085 0.035



Analysis of Variance

Analysis of Variance - Objectives

Students should demonstrate ability to conduct and interpret Analysis of Variance.



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, and the sample

average, median, mode. These exploratory data analysis (EDA) techniques should always be used prior to

estimation and hypothesis testing. However, prior to conducting EDA, the phenotype should be modeled using

the parameters in the experimental and sampling designs.



Background

The AOV has been the primary tool for testing hypotheses about parameters in linear models. The AOV was

originally developed and introduced for analyses of quantitative genetic questions by R.A. Fisher (1925). Since

its introduction, the assumptions underlying the AOV have guided development of sophisticated experimental

designs, and with increasing computational capabilities the AOV has evolved to provide estimates of variance

components from these designs. While the breadth and depth of experimental design and analyses of linear

models are beyond the scope of this class, it is worth recalling the salient features of experimental design and

their impact on inferences from the AOV.

Experimental Designs consist of design structures, treatment structures, and allocation of these structures to

experimental units. Typical design structures utilized by plant breeders include Randomized Complete Block,

Lattice Incomplete Block and Augmented Designs. The primary treatment designs of interest of plant breeders

involve allocation of genotypes to experimental units. This is accomplished primarily through mating, although

with the emergence of biotechnologies, such as protoplast fusion, tissue culture and various transgenic

technologies, there are many ways to allocate treatments (genotypes) to experimental units. Would you

consider treatments from these technologies as �xed or random effects? Why? Experimental units can be split

in both time and space, resulting in the ability to apply treatment and design structures to different sized

experimental units.



Design Principles

Design principles in allocation of treatment and design structures to experimental units include: Randomization,

Replication and Blocking. These are principles rather than rigid rules. As such they provide �exibility in

designing experiments to draw inferences about biological questions. Assuming that these principles are

applied appropriately, experimental data can be used for obtaining unbiased estimates of treatment effects,

variances, covariances and even predict breeding values.



Completely Random Design

Let’s imagine that we have two plant introduction accessions. We wish to evaluate whether these two

accessions are unique with respect to yield.

Assume that we have 10 plots available for purposes of testing the null hypothesis that there is no difference in

their yield. Also, assume that we have enough seed to plant 200 seeds in each plot.

Let’s next assume that the 10 plots consist of two-row plots that are arranged in a 5x2 grid consisting of �ve

ranges with 2 plots per range. We can randomly assign seed from each accession to the 10 plots. This would

represent a Completely Random Design (CRD). Can you explain why?



Fixed and Random Effects

Prior to execution of the experiment, we want to model the phenotypic data using a linear function. In this case

we would model the phenotypic data using

where Yij is the yield of plot i, j, where i=1, 2 for accession and j=1, ..., 5 for replicate. μi represents the mean of

accession i, and the erro, εi,j ~ i.i.d. N(0, σ2). It is important to get in the habit of recognizing whether the

parameters of the model are considered random or �xed effects.

In this �rst model, since we selected the two accessions, rather than sampled them from some population, we

should consider them to be �xed effects. The parameter εi,j representing the residual or error in the model is

based on a sample of plots to which experimental units are assigned, so εi,j is considered a random effect.



AOV Based on Yield

Next, let’s say that we evaluate the plots for yield (bushels per acre) as well as stand counts (plants per plot) at

the time of harvest. The resulting data might look something like in the table below.

If we conduct an AOV based on yield using the model for a CRD, we will generate a table that looks something

like this below.

PI accession 1 PI accession 2

Block (t/ha) (plants/plot) (t/ha) (plants/plot)

1 1.69 91 1.88 102

2 1.95 122 1.82 89

3 2.20 143 2.01 139

4 2.13 145 2.01 147

5 1.76 110 1.95 112

Source df MS F Prob

Accession 1      

Residual 8       



Blocking Ranges

Suppose that we suspect a gradient for some soil factor (moisture, organic matter, fertility, etc.) across the

ranges. In order to remove the effect of the gradient on our comparisons between the two accessions we

should probably ‘block’ each range as a factor in our model.

Let’s further assume that we block the accession ‘treatments’ into �ve blocks consisting of two plots each. If

we randomly group pairs of the accessions into 5 sets, next randomly assign each set to a range and third

randomly assign each accession within a set to the plots within ranges, we will have a randomized complete

block design (RCBD) that can be modeled as Yij = bj + μi + εij where the de�nition of parameters is the same as

the CRD model, but with the added term for a blocking factor.



Mixed Linear Model

In this second model the accessions are selected so we should consider them to be �xed effect parameters.

Although the block parameter represents a sample of many possible blocks in the �eld trial, there are only a few

blocks that represent a “nuisance” source of variability, so we can treat them as a �xed effect, while the

parameter εij represents the residual or error in the model which is based on a sample of plots to which

experimental units are assigned.

Thus εij is considered random effects where εij ~ i.i.d. N(0, σe
2) and the model is considered a mixed linear

model.

Source df MS F Prob

Block 4      

Accession 1      

Residual 4      



Regression and Prediction

Regression and Prediction - Objectives

Demonstrate ability to conduct and interpret regression analyses.



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, and the sample

average, median, mode. These exploratory data analysis (EDA) techniques should always be used prior to

estimation and hypothesis testing. However, prior to conducting EDA, the phenotype should be modeled using

the parameters in the experimental and sampling designs.



Linear Regression

Historically, linear (and non-linear) regression has not been utilized extensively by plant breeders, although it

provides the conceptual foundation for understanding additive genetic models and analysis of covariance.

Recently, with the emergence of molecular marker technologies the importance of linear regression has

manifested itself in development of predictive methods such as Genomic Prediction. Linear regression is an

approach to modeling the relationship between a scalar dependent variable Y (e.g., harvestable grain yield per

unit of land) and one or more explanatory variables (e.g., breeding values of lines involved in crosses) denoted

by X.



Basic Assumptions

In linear regression, the phenotype is modeled using a linear function. There are four basic assumptions made

about the relationship between a response variable Y and an explanatory variable X.

1. All Y values are from independent experimental or sample units.

2. For each value of X, the possible Y values are distributed as normal random variables.

3. The normal distribution for Y values corresponding to a particular value of X has a mean μ{Y|X} that lies

on a line:

where β0 is the intercept and represents the mean of the Y values when X=0 and β1 is the slope of the line. β1
represents the change in the mean of Y per unit increase in X.

4. The distribution of Y values corresponding to a particular value of X has standard deviation σ{Y|X). The

standard deviation is usually assumed to be the same for all values of X so that we may write σ{Y|X}=σ.

Violation of the last assumption is typical in plant breeding data and development of methods to account

for unequal variances is an area of important research.

Equation 17



Simple Linear Regression

Suppose we have n observations of a response variable Y and an explanatory variable X: (X1,Y1), . . . , (Xn,Yn).

The model can be rewritten as:

for i = 1, . . . , n experimental units. ei , . . . , en are assumed to be independent normal random variables with

mean 0 and standard deviation σ{Y|X}=σ. Thus, least squares estimates of the Yi values are:

The residual ei (e1, . . . , en) can be calculated as:

Equation 18

Equation 19

Equation 20



Parameter Estimates

The estimators for parameters , , and  are

Fig. 10 Estimator plot.



Prediction

Notice that   provides a predicted value of Yi. Imagine that the xi (i=1, ..., n) values are a

genotypic index for cultivar/individual i, such as the sum of all allelic values (+1 or -1) at quantitative trait loci

throughout the genome. Some cultivars could have 60 positive allelic values and no negative allelic values,

while other cultivars could have a genotypic index of -20 (see Figure 10). If the positive genotypic index values

are associated with high phenotypic values, such as in the �gure, then we will have a strong positive linear

relationship between the genotypic index and the phenotypes. Strong linear relationship can enable the plant

breeder to predict phenotypes without having to spend resources on growing cultivars. The stronger the linear

relationship is between the genotypic index and the phenotype (less variability around the line), the better the

ability to predict. This concept represents the foundation for what is widely referred to as Genomic Prediction.

There are a number of details about how allelic values are estimated and combined into genotypic indices. The

foundational concepts that address these details are covered in the Introduction to Quantitative Genetics

section.



Analysis of Covariance

Analysis of Covariance - Objective

Demonstrate ability to conduct and interpret Analysis of Covariance



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, and the sample

average, median, mode. These exploratory data analysis (EDA) techniques should always be used prior to

estimation and hypothesis testing. However, prior to conducting EDA, the phenotype should be modeled using

the parameters in the experimental and sampling designs.

AOC is typically applied when there is a need to adjust results for variables that cannot be controlled by the

experimenter. For example imagine that we have two plant introduction accessions and we wish to evaluate

whether these two accessions are unique with respect to yield. Also, imagine that germination rates for each

accession is different but unknown, especially under �eld conditions in a new environment. We could decide

to overplant each plot and reduce the number of plants per plot to a constant number equal to a stand count

that is typical under current Agronomic practices. However, such an approach will be labor intensive and not as

informative as simply adjusting plot yields for stand counts.



Example

Assume that we have 10 plots available for purposes of testing the null hypothesis that there is no difference in

their yield. Also, assume that we have enough seed to plant 200 seeds in each plot, although current agronomic

practices are more closely aligned with stands of about 125 plants per plot. Let’s next assume that the 10 plots

consist of two-row plots that are arranged in a 5x2 grid consisting of �ve ranges with 2 plots per range.

Suppose that we suspect a gradient for some soil factor (moisture, organic matter, fertility, etc.) across the

ranges. In order to remove the effect of the gradient on our comparisons between the two accessions we

should probably ‘block’ each range as a factor in our model. If we randomly group pairs of the accessions into 5

sets, next randomly assign each set to a range and third randomly assign each accession within a set to the

plots within ranges, we will have a RCBD. At the time of harvest we evaluate the plots for yield (bushels per

acre) as well as stand counts (plants per plot). The resulting data are arranged in the following table.

Table 7 Data from RCBD plot. 

PI accession 1 PI accession 2

Block (t/ha) (plants/plot) (t/ha) (plats/plot)

1 1.69 91 1.88 102

2 1.95 122 1.82 89

3 2.20 143 2.01 139

4 2.13 145 2.01 147

5 1.76 110 1.95 112



Model Equation

If we model the yield data as Yij = bj + µi+ εij , where Yij is the yield of plot ij , µi represents the mean of

accession i, bj represents the jth block in which each pair of accessions are grown and εij ~ i.i.d. N(0,σ2), the

resulting analysis revealed that the variability between accessions is not much greater than the residual

variability. We might interpret this to mean that there is no difference in yield between the two accessions.

However, our real interest is in whether there is a difference between the accessions at the same stand counts.

A more appropriate model for the question of interest is:

The model has two intercepts, denoted αi (i=1,2) for each of the accessions, and two slopes denoted ßi (i=1,2),

for each of the accessions. Xij is the jth stand count in accession i (i=1,2). The model also has random effects

parameters denoted by bj and εi,j where bj~ i.i.d. N(0,σb
2) and εi,j ~ i.i.d. N(0, σe

2). The resulting analyses of

variability associated with each of the parameters is known as Analysis of Covariance, and can be thought of as

an approach that takes advantage of both regression and ANOVA, i.e., an AOC model includes parameters

representing both regression and factor variables. The result of the estimation procedure will enable us to

evaluate whether the accessions are equal at stand counts of interest. In other words it will be possible to

adjust yield values to various stand counts of interest. As a matter of ethics in science, the variable stand count

of interest needs to be modeled prior to conducting the �eld trial.



Computational Considerations

Computational Considerations - Key Concepts

As long as data are balanced all computational algorithms will provide the same estimates of variance

components.

• When data are not balanced, either by design or accident, simple algorithms implemented in many widely

used software packages (EXCEL, JMP for exampes) will not provide correct estimates of variance

components.



Statistical Inference

The purpose of statistical inference is to interpret the data we obtain from sampling or designed experiments.

Preliminary insights come from graphical data summaries such as bar charts, histograms, box plots, stem-leaf

plots and simple descriptive statistics such as the range (maximum, minimum), quartiles, and the sample

average, median, mode. These exploratory data analysis (EDA) techniques should always be used prior to

estimation and hypothesis testing. However, prior to conducting EDA, the phenotype should be modeled using

the parameters in the experimental and sampling designs.



Computational Methods

Most plant breeding data are obtained using a limited number of �eld plot designs consisting of lines (cultivars,

hybrids, synthetics, etc.), environments and occasionally complete blocks, but usually incomplete blocks, within

environments. Further, numbers of observations per source of variation are seldom balanced; even if designed

for balance, some plots are lost during the course of a growing season. Thus, while the algorithm for obtaining

EMS (described in the section Statistical Inference: Analysis of Variance) is useful for learning basic concepts,

it is of little practical use for most plant breeding projects. Just as the estimates of means need to be adjusted

through use of lsmeans, advanced computational methods are needed to obtain accurate estimates of variance

components of the linear model when data are obtained from unbalanced conditions. The computational

methods are affected by �xed effects, random effects or a mixture of both types of effects. There are three

primary computation methods for estimating variance components: Method of Moments (MM), Maximum

Likelihood (ML), and Restricted Maximum Likelihood (REML).

https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-2
https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-2
https://pbea.agron.iastate.edu/course-materials/quantitative-genetics/review-material/statistical-inference-2


Regression, Anova, and AOC

Computation of the MM estimators of variance components is essentially a matter of equating observed mean

squares, calculated using the sums of squared deviations and cross products, with the expected mean squares,

as demonstrated by Lorenzen and Anderson (1993, Design of Experiments: A No-Name Approach. p 71-72).

These are appropriate if the data are balanced. Most advanced statistical software packages, e.g., SAS and R,

calculate the sums of squares and cross products for the MM using the MIVQUE(0) algorithm (Minimum

Variance Quadratic Unbiased Estimator, with no weighting for random effects).

Computation of ML and REML are derived from MIVQUE(0); both use MIVQUE(0) estimates as starting points in

an iterative algorithm that maximizes the likelihood function, assuming that the random effects are distributed

as random normal variables. The difference between ML and REML is that the likelihood function in REML is

maximized only for the random effects, i.e., the �xed effects are removed from the likelihood function. For a

model consisting of only random effects, both ML and REML will provide the same results. Indeed, for

completely balanced data from random effects models, all three computational methods provide the same

results. When dealing with unbalanced data or mixed effect models, REML has been shown to be the best

computational method.



Further Considerations

As a practical matter, if your data is missing less than 10% of the experimental units within any environment, the

MM approach will provide estimates that are almost as good as REML. Otherwise the estimates should be

obtained with mixed model equations (MME) and a REML algorithm. We encourage the use of R or SAS

software for conducting data analyses. R is free, while the SAS license fees pay for more rigorous quality

assurance.



Matrix Algebra

Definitions and Notation

A matrix is a collection of numerical values arranged in rows and columns. Herein, the elements of a matrix are

enclosed in brackets. For example,

is a matrix with 4 elements arranged in 2 rows and two columns.

Matrices with more than two or more rows and columns are denoted with upper case bold letters. Vectors are a

special type of matrix with only one row or one column. For example,



Special Kinds of Matrices

Vector matrices are denoted with lower case bold italicized letters. A matrix consisting of only one row and

once column is referred to as a scalar matrix. A square matrix has the same number of rows and columns. A

diagonal matrix is a square matrix with off-diagonal elements equal to 0. An identity matrix is a diagonal matrix

with diagonal elements = 1. The identity matrix is almost always denoted I.



Operations

Matrices must be conformable, i.e., matrix operations have requirements on the numbers of rows and columns.

It is possible to add or subtract two matrices, but only if they have the same numbers of rows and columns. For

example,

It is possible to multiply a matrix by a scalar value (say 'v') by simply multiplying all elements of the matrix by

the scalar value, v. Thus,



Multiplying Vectors

It is possible to multiply two vectors, but only if 1) one of the vectors is a row vector, 2) the second is a column

vector, 3) the row vector has as many elements as the column vector. For example,

The operation of vector multiplication in the �rst instance indicates that we have a 1x3 matrix multiplied by a

3x1 matrix. The way we carry out the vector multiplication is to multiply the elements from each matrix in a

pairwise manner, then sum the results of all 3 pairs:



Multiplying Vectors In Reverse

We could also apply the rule of multiplying and summing pairs of elements to the reverse arrangement of these

two vectors:

Notice that the order of arrangement of vectors matters. Likewise, the arrangement of matrices that are to be

multiplied matters. Virtually all types of matrix multiplication involve the multiplication of a row vector by a

column vector. In essence we partition each matrix into a set of row and column vectors, then apply the rules of

vector multiplication.



Matrix Multiplication

Let’s consider C=AB. cij = ai.bj , where ai is the ith row vector of A and bj is the jth column vector of B. For

example,

Notice that matrix multiplication requires that the �rst matrix must have as many columns as the second matrix

has rows. Thus, AB is usually not equal to BA. Indeed, while AB may be possible, BA may not. Lastly verify for

yourself that IA, IB and Ix = A, B and x respectively.



Additional Important Operations

The transpose of a matrix, denoted as A’ (or At or AT) is a useful operation in which the �rst row of a matrix

becomes the �rst column of its transpose, while the second, third, … etc rows become the second, third, … etc

columns of its transpose. For example,

The inverse of a matrix is best understood by recalling that in scalar algebra the inverse of a number multiplied

by the number will be = 1. Thus the inverse of x is x-1. In matrix algebra the inverse of a matrix is a matrix when

multiplied by the original matrix is I. That is AA-1 = A-1A= I. Only square matrices will have an inverse, although

not all square matrices will have an inverse. Bernardo describes how to calculate the inverse of a simple 2x2

matrix and it is possible to calculate inverse matrices consisting of 3x3 elements, but calculations of inverses

of larger matrices are better left to software.
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